Abstract:
The present technology is generally directed to systems and methods for improving quenched coke recovery. More specifically, some embodiments are directed to systems and methods utilizing one or more of a screen, barrier, or reflector panel to contain or redirect coke during or after quenching. In a particular embodiment, a quench car system for containing coke includes a quench car having a base, a plurality of sidewalls, and a top portion. The system can further include a permeable barrier covering at least a portion of the top of the quench car, wherein the permeable barrier has a plurality of apertures therethrough.
Abstract:
The present technology is generally directed to non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods. In some embodiments, a coking system includes a coke oven and an uptake duct in fluid communication with the coke oven. The uptake duct has an uptake flow vector of exhaust gas from the coke oven. The system also includes a common tunnel in fluid communication with the uptake duct. The common tunnel has a common flow vector and can be configured to transfer the exhaust gas to a venting system. The uptake flow vector and common flow vector can meet at a non-perpendicular interface to improve mixing between the flow vectors and reduce draft loss in the common tunnel.
Abstract:
A duct intersection comprising a first duct portion and a second duct portion extending laterally from a side of the first duct portion. At least one flow modifier is mounted inside one of the first and second duct portions. The flow modifier is a contoured duct liner and/or the flow modifier includes at least one turning vane. The duct intersection may also include a transition portion extending between the first and second duct portions, wherein the transition portion has a length extending along a side of the first duct portion and a depth extending away from the side of the first duct portion, wherein the length is greater than a diameter of the second duct portion.
Abstract:
A low-carbon granulated metallic unit having a mass fraction of carbon between 0.1 wt. % and 4.0 wt. % is disclosed herein. Additionally or alternatively, the granulated metallic unit can comprise a mass fraction of phosphorous of at least 0.025 wt. %, a mass fraction of silicon between 0.25 wt. % and 1.5 wt. %, a mass fraction of manganese of at least 0.2 wt. %, a mass fraction of sulfur of at least 0.0001 wt. %, and/or a mass fraction of iron of at least 94.0 wt. %.
Abstract:
High quality coke products including unique properties, such as Coke Reactivity Index (CRI) properties, fixed carbon content, and sulfur content.
Abstract:
The present technology relates to systems and methods for reducing leaks in a system for coking coal. For example, some embodiments provide systems and method for treating a cracked or leaking surface in a system for coking coal. In particular, the present technology includes systems having one or more substances configured to reduce an airflow through one or more cracks by creating an at least partially impermeable patch. The present technology further includes methods for treating surfaces having one or more cracks to reduce an airflow through the one or more cracks.
Abstract:
Coal blends used to produce foundry coke products are disclosed herein. Coal blends can include first coals having a first volatile matter mass fraction less than or equal to a first threshold, and second coals having a second volatile mass fraction greater than or equal to a second threshold that is less than the second threshold. The coal blend can have an ash fusion temperature less than 2600° F. and an aggregated volatile matter mass fraction between 15% and 25%.
Abstract:
High quality coke products made in horizontal ovens such as heat recovery, non-recovery or Thompson ovens from an optimized coal blend. The coke products have unique properties such as an oblong shape and improved Coke Strength after Reaction (CSR) and Coke Reactivity Index (CRI) properties.
Abstract:
A system and method for repairing a coke oven having an oven chamber formed from ceramic bricks. A representative system includes a insulated enclosure insertable into the oven chamber and includes removable insulated panels that define an interior area for workers to work in. The insulated enclosure is movable between an expanded configuration and a compact configuration and moving the enclosure to the expanded configuration will decrease the distance between the insulated enclosure and the walls of the oven chamber. Removing the panels exposes the ceramic bricks and allows workers within the interior area to access and the bricks and repair the oven chamber while the oven chamber is still hot. A loading apparatus lifts and inserts the insulated enclosure into the oven chamber. The insulated enclosure can be coupled to additional insulated enclosures to form an elongated interior area.
Abstract:
A coke plant includes multiple coke ovens where each coke oven is adapted to produce exhaust gases, a common tunnel fluidly connected to the plurality of coke ovens and configured to receive the exhaust gases from each of the coke ovens, multiple standard heat recovery steam generators fluidly connected to the common tunnel where the ratio of coke ovens to standard heat recovery steam generators is at least 20:1, and a redundant heat recovery steam generator fluidly connected to the common tunnel where any one of the plurality of standard heat recovery steam generators and the redundant heat recovery steam generator is adapted to receive the exhaust gases from the plurality of ovens and extract heat from the exhaust gases and where the standard heat recovery steam generators and the redundant heat recovery steam generator are all connected in parallel with each other.