Abstract:
A lighting circuit for a light emitting diode (LED) bulb capable of operating at different light output levels depending on received AC power includes a first group of LEDs and second group of LEDs, each of which is configured to emit light as a group. The lighting circuit also includes an AC/DC converter electrically connected to the first and second groups of LEDs. A detector circuit detects received AC power. A selection circuit is operable to cause the AC/DC converter circuit to provide current into one configuration of LEDs from the group of configurations of LEDs consisting of: the first group of LEDs only, the second group of LEDs only, and the first and second group of LEDs. The configuration of LEDs to provide current to is selected based on received AC power.
Abstract:
A light bulb having anti-reflective coatings on an inner surface and/or an outer surface of the shell of the light bulb. The anti-reflective coatings reduce light loss due to reflections at the interfaces between the interior of the bulb and the shell and between the shell and the exterior of the bulb. The light source may be either incandescent, fluorescent or LED.
Abstract:
A light emitting diode (LED) bulb configured to scatter certain wavelengths of light. The LED bulb includes a base having threads, a bulb shell, at least one LED, and a plurality of particles disposed within the bulb shell. The plurality of particles has a first and second set of particles. The first set of particles is configured to scatter short wavelength components of light emitted from the at least one LED and has particles with an effective diameter that is a fraction of the dominant wavelength of the light emitted from the at least one LED. The second set of particles is configured to scatter light emitted from the at least one LED, and has particles with an effective diameter equal to or greater than the dominant wavelength of the light emitted from the at least one LED.
Abstract:
A glass LED bulb, which includes a body of glass, the body having at least one hollow portion, and at least one LED contained within the at least one hollow portion. A thermally conductive material is preferably included within the at least one hollow portion. The body of glass can be bulb-shaped or alternatively shaped like an incandescent bulb.
Abstract:
A multi-color white LED which can be driven by a single current, and more particularly, to the use of a specific ratio of numbers of different color LEDs to obtain a specific desired color while running all of them at the same current.
Abstract:
An LED bulb includes a stem body, a shell, a plurality of LEDs, and a thermally conductive liquid. The shell is connected to the stem body. The plurality of LEDs is disposed within the shell. The thermally conductive liquid is held within the shell. The LEDs and the shell are configured to provide the LED bulb with a uniform light-distribution profile.
Abstract:
A liquid-cooled light emitting diode (LED) bulb which includes a base, a shell connected to the base forming an enclosed volume, and a plurality of LEDs attached to the base and disposed within the shell. The LED bulb also includes a volume of thermally-conductive liquid held within the enclosed volume. A scavenger element comprising a scavenger material is attached to the base and is exposed to the thermally-conductive liquid. The scavenger material is configured to capture contaminants in the thermally-conductive liquid.
Abstract:
An LED bulb includes a base, a shell connected to the base, one or more LEDs, a thermally conductive liquid, and a flexible diaphragm. The one or more LEDs are disposed within the shell. The thermally conductive liquid is held within the shell. The flexible diaphragm is in fluidic connection to the thermally conductive liquid, and is configured to deflect from a first position to a second position to compensate for expansion of the thermally conductive liquid.
Abstract:
An LED bulb, which includes a shell, a filler material within the shell of the bulb, at least one type of phosphor dispersed inside the filler material and at least one LED within the shell.
Abstract:
A light-emitting diode (LED) bulb has an LED within a shell. The LED bulb includes a driver circuit for providing current to the LED. The drive circuit has a thermal protection circuit, which includes a first positive thermal coefficient thermistor with a first switching temperature connected in series with a second positive thermal coefficient thermistor with a second switching temperature. The driver circuit includes a switch-mode power supply (SMPS) controller with an input pin and an output pin. The thermistors are connected to the input pin. When either thermistor temperature is above the respective switching temperatures, the thermal protection circuit causes the SMPS controller to produce a signal with a second duty cycle on the output pin. When both thermistor temperatures are below the respective switching temperatures, the thermal protection circuit causes the SMPS controller to produce a signal with a first duty cycle on the output pin.