Abstract:
A mobile phone including a perfume spraying apparatus, the perfume spraying apparatus including a perfume storage unit capable of storing at least one perfume type and a perfume spraying unit, wherein the perfume spraying unit includes a perfume chamber coupled to the perfume storage unit by a perfume flow path, a pressure unit to pressurize the perfume chamber, and a nozzle to spray perfume outside the mobile phone. The mobile phone may include a control unit to instruct the perfume spraying apparatus to spray perfume when a button of the mobile phone is pushed and/or when the mobile phone is called and may change a type or amount of perfume sprayed according to an increase or decrease in a user's voice volume, according to a caller, according to a user customization and/or according to a noise change in a user's surroundings.
Abstract:
A fluxgate sensor is integrated in a semiconductor substrate. The fluxgate sensor has two bar type soft magnetic cores, or a rectangular-ring type soft magnetic core to form a closed magnetic path on the semiconductor substrate, with an excitation coil formed of a metal layer either of the united structure winding the two bar-type cores or two longer sides of the rectangular-ring type core altogether and substantially in a number ‘8’ pattern, or of a separated structure winding the two bar type cores or two longer sides of the rectangular-ring type core, respectively, in a number ‘8’ pattern. Also, a pick-up coil is formed on the two bar-type cores or two longer sides of the rectangular-ring type core, either of the united structure winding the two bar-type cores or two longer sides of the rectangular-type core altogether in a solenoid pattern, or of the separated structure winding the two bar type cores or two longer sides of the rectangular-ring type core, respectively, in a solenoid pattern.
Abstract:
A photographing device supporting a panoramic imaging includes an image capture section for photographing a subject and outputting image data representing the subject, a sensor module for computing and outputting an azimuth of a photographing direction toward the subject, an image processor for creating a panoramic image by combining a plurality of image data captured at the image capture section, an output section for displaying a message using a display, and a controller for controlling the output section to set a target azimuth corresponding to an azimuth at an image capture and to adjust a photographing direction to the target azimuth when one of the plurality of the image data is captured. Thus, after photographing the subject in various angles while precisely controlling the photographing direction, the panoramic image can be created by combining the captured images.
Abstract:
A method, medium and electronic device using a three-axis geomagnetic sensor for quick and accurate measurement of an azimuth angle includes a first calculating unit to calculate distances between an output value of the three-axis geomagnetic sensor and an offset value, and a controller to determine that the offset value is distorted when the distance calculated by the first calculating unit deviates from a predetermined range of radius values. The electronic device can further include a sampling unit to sample output values of the three-axis geomagnetic sensor when the calculated distance deviates from the predetermined range of radius values, and a second calculating unit to calculate a mean value and a standard deviation value for distances between the sampled values and the offset value. The controller may determines that the offset value is distorted when the mean value and the standard deviation value deviate from predetermined permissible ranges.
Abstract:
A geomagnetic sensor for auto-calibration of a deviation and a method of using the geomagnetic sensor. The geomagnetic sensor includes a geomagnetic detector including X-axis and Y-axis fluxgates orthogonal to each other and receiving a drive signal to detect an electromotive force corresponding to a geomagnetism, a signal processor converting the electromotive force output from the geomagnetic detector into X-axis and Y-axis output values and outputting the X-axis and Y-axis output values, and a drive signal generator applying the drive signal to the geomagnetic detector. Each of the X-axis and Y-axis fluxgates includes cores, a solenoid type exciting coil, and at least two detection coils winding around the cores in a solenoid form. Accordingly, as an azimuth is measured using output values detected by the separated detection coil, the azimuth can be exactly and easily detected regardless of an external magnetic field.
Abstract:
A geomagnetic sensor includes a geomagnetic detection module configured to output an electrical signal having a magnitude corresponding to a magnetic field; a memory configured to store an azimuth measured in a horizontal plane; an accelerometer module configured to measure a tilt at present, and to compute a tilt angle therefrom; and a controller configured to calculate a dip angle by using the electrical signal outputted from the geomagnetic detection module, the tilt angle, and the horizontal azimuth. A method for detecting a dip angle by a geomagnetic sensor includes outputting an electrical signal having a magnitude corresponding to an external geomagnetic field; detecting an azimuth in a horizontal plane and storing the detected azimuth; measuring a tilt at present and computing a tilt angle thereof; and calculating a dip angle by using the electrical signal, the tilt angle, and the azimuth measured in the horizontal plane.
Abstract:
Disclosed is a magnetic field sensor of high sensitivity, and which is power-saving and can be manufactured with low cost in a very small size. The magnetic field sensor includes a soft magnetic core formed to construct a closed-magnetic circuit on a semiconductor substrate, a magnetic field sensing coil formed by a metal film in a shape that winds the soft magnetic core, and a drive line for exciting the soft magnetic core by directly applying an electric current thereto. The drive line is formed in a rectangular angle to the magnetic field sensing coil, and connected to the both ends of the soft magnetic core in a length direction.
Abstract:
A fluxgate sensor integrated in a printed circuit board. The fluxgate sensor has soft magnetic cores having a lower core and an upper core mounted on the lower core, for forming a closed magnetic path on a printed circuit board, an excitation coil formed as a metal film, alternately winding the upper and the lower soft magnetic cores substantially in a number ‘8’ pattern, and a pick-up coil formed as a metal film, having a structure of winding the upper and the lower soft magnetic cores substantially in a solenoid pattern, the pick-up coil being placed on the same plane as an external contour of the excitation coil.
Abstract:
A method for manufacturing a magnetic field detecting element having a soft magnetic core formed on a substrate, first and second coils, each having coil lines, arranged above and below the core, the method including forming a seed film on the substrate, removing a portion of the seed film using a predetermined pattern so that coil lines constituting the first coil subsequently formed on the seed film are separated, forming a first plating mold having grooves corresponding to the predetermined pattern on an upper portion of the seed film, forming coil lines constituting the first coil by filling the grooves of the first plating mold with metal, forming the soft magnetic core and the second coil on an upper portion of the substrate and on the seed film where the first coil is formed, and cutting off edges of the substrate so that the separated coil lines are insulated.
Abstract:
A video pick device for displaying a menu in a fixed position regardless of its rotation state. The photographing device comprises a geomagnetic sensor for detecting a predetermined output value corresponding to a geomagnetism; a display unit for displaying a predetermined menu through a display panel; and a control unit for checking the output value detected by the geomagnetic sensor to determine a pickup position, and controlling the display unit to have a display state of the menu changed in response to the determined pickup position. Accordingly, the menu display state on the display panel is changed in response to respective pickup positions to be displayed with the same form in a fixed direction with respect to the surface of the earth.