Abstract:
Apparatus, methods and computer program products that support inter-PLMN coordination in registration and handover operations are provided. Hysteresis is introduced in registration of radioterminals in a hybrid terrestrial/satellite mobile communications environment. Inter-PLMN handover techniques are provided, including techniques for coordination of communication of timing information and traffic channel controls.
Abstract:
A method of transmitting information in a wireless communications system can be provided by selectively applying filtering to transmission of a carrier signal of a first band of frequencies of a wireless communications system based on a frequency separation distance between a frequency content of the carrier signal and a second band of frequencies allocated to a communications system other than the wireless communications system.
Abstract:
A first and/or a second communications system may provide communications service over a geographic area. A method of operating the first and/or the second communications systems may include generating a measure of aggregate interference reaching a satellite of the second communications system substantially from devices of the first communications system. The measure of aggregate interference reaching the satellite of the second communications system may be transmitted to an element of the first communications system.
Abstract:
Communications of a mobile station with a satellite mobile communications system and a terrestrial mobile communications system are coordinated. The mobile station is registered with the terrestrial mobile communications system and, responsive to the registration of the mobile station with the terrestrial mobile communications system, the mobile station is concurrently registered with the satellite mobile communications system. The concurrent registration may include implicitly registering the mobile station with the satellite mobile communications system, e.g., by storing information identifying the mobile station may be stored in a location register of the satellite mobile communications system responsive to the registration of the mobile station with the terrestrial mobile communications system, and maintaining synchronization between the two registrations. Authentication tokens may be pre-generated for quick re-registration with a satellite mobile communications system.
Abstract:
A first and/or a second communications system may provide communications service over a geographic area. A method of operating the first and/or the second communications systems may include generating a measure of aggregate interference reaching a satellite of the second communications system substantially from devices of the first communications system. The measure of aggregate interference reaching the satellite of the second communications system may be transmitted to an element of the first communications system.
Abstract:
A Frequency Division Duplex (FDD) wireless terminal includes spaced-apart antennas that are configured to transmit over a return link and to receive over a forward link that is spaced apart from the return link in frequency. The FDD wireless terminal is configured to selectively refrain from transmitting over the return link from at least one of the spaced-apart antennas of the FDD wireless terminal in response to differentials in forward link power that is received at the spaced-apart antennas of the FDD wireless terminal, that are caused, for example, by blocking appendages of a user of the wireless terminal. Related methods are also described.
Abstract:
A radioterminal system includes a server that contains a listing of satellite spot beams and registration information for radioterminals. The listing of satellite spot beams includes an association of base stations with each satellite spot beam of the listing of satellite spot beams. Related methods are also provided.
Abstract:
A buffer management system (100) partitions a total memory space (200) into a programmable number of substantianially uniform size buffers (220-223). An application communicates the desired number of buffers to the buffer management system (200), then allocates these buffers among the data-transfer paths used by the application. Optionally, multiple uniform-size buffers can be merged to form a single logical buffer. By effecting the partitioning of the total memory space (200) into uniform-size buffers (220-223), the overhead required to manage the multiple buffers is minimized. By providing a selected number of managed buffers to an application, the application is able to allocate buffers as required, without having to be concerned with the details of buffer management.
Abstract:
A first and/or a second communications system may provide communications service over a geographic area. A method of operating the first and/or the second communications systems may include generating a measure of aggregate interference reaching a satellite of the second communications system substantially from devices of the first communications system. The measure of aggregate interference reaching the satellite of the second communications system may be transmitted to an element of the first communications system.
Abstract:
A processor for use in a satellite communications system includes a selector that is configured to select a subset of a plurality of spatially diverse satellite signals based upon a location of a radioterminal. The processor further includes a signal processor that is configured to detect a return-link transmission from the radioterminal responsive to the selected subset of the spatially diverse satellite signals. The respective spatially diverse satellite signals may include respective signals corresponding to respective antenna elements of a satellite. The selector and the signal processor may be ground based.