Abstract:
An optical disc includes a base having a signal reading surface at a first surface; a reflective layer provided on the signal reading surface of the base; a cover layer provided on the reflective layer; and a small memory device having a communication function provided at a side opposing the signal reading surface of the base.
Abstract:
A disc-shaped information recording medium in which the recording density can be increase to secure a large storage capacity and in which there is no risk of an address section being mistakenly detected by cross-talk from a neighboring track, is disclosed. Specifically, an optical disc of a continuous servo system in which tracking is controlled using a pre-groove and in which information is recorded and/or reproduced with constant angular velocity using clocks of a sole frequency, is disclosed. On the disc is formed a spiral track made up of a data portion for recording data and an address section for recording management information for recording/reproducing data. Both a groove and a land are used as a recording/reproducing track. Odd tracks are formed on the land, while even tracks are formed on the groove.
Abstract:
A disc-shaped information recording medium in which the recording density can be increased to secure a large storage capacity and in which there is no risk of an address section being mistakenly detected by cross-talk from a neighboring track, is disclosed. Specifically, an optical disc of a continuous servo system in which tracking is controlled using a pre-groove and in which information is recorded and/or reproduced with constant angular velocity using clocks of a sole frequency, is disclosed. On the disc is formed a spiral track made up of a data portion for recording data and an address section for recording management information for recording/reproducing data. Both a groove and a land are used as a recording/reproducing track. Odd tracks are formed on the land, while even tracks are formed on the groove.
Abstract:
A disc-shaped recording medium in which concentric recording tracks or a spiral recording track is divided circumferentially to form a number of sectors in each of which track addresses are pre-recorded, wherein each position of the track address is formed by a base-m Gray code, and wherein each position is sequentially formed so that the Gray code of positive or negative logic and a negative logic is used for the upper order digit having the value of an even or odd number and the upper order digit having the value of an odd number, respectively.
Abstract:
In recording a data disk, the disk is divided into n+m sectors defining a group. Data and corresponding error correction codes are written into each of n sectors. The remaining m sectors are written with error correction code spanning the n sectors including the previously written error correction code.