摘要:
In a multilayer optical disc having information layers conforming to a plurality of different optical disc standards, because the type of each information layer is not recorded in the other information layers, in read and write operations by a compatible optical disc device conforming to a plurality of optical disc standards, every time the information layer being accessed changes, it has been necessary to read the type of the information layer and select a method of generating a tracking error signal adapted to the type of information layer, so access has taken time. In order to solve the above problem, in the optical multilayer disc according to the present invention, having information layers conforming to a plurality of different optical disc standards, in an area in one of the information layers, information about the other information layers is recorded. The time required to access the other information layers can be reduced by using this information to select a tracking error signal generating method.
摘要:
A reproducing device (100) includes (i) an optical pickup (6) for irradiating, with reproduction light, an optical disk (1) which is a super-resolution medium, (ii) an RF signal processing circuit (9) for converting, into a reproduction signal, light which reflected off optical disk (1), (iii) an i-MLSE detecting section (141) for evaluating quality of the reproduction signal, and (iv) a spherical aberration correcting section (142) for correcting a spherical aberration by using a result of evaluation of the quality of the reproduction signal.
摘要:
An optical information storage medium includes a multilayer film that includes a plurality of extruded alternating active data storage layers and buffer layers, which separate the active data storage layers. The active data storage layers and buffer layers have thicknesses that allow the active data storage layers to be writable by non-linear or threshold writing processes to define data voxels within the active data storage layers that are readable by an optical reading device.
摘要:
In a recording technique in which a plurality of light spots are simultaneously formed by using an ultra-short pulse laser and a spatial phase modulator, and a plurality of recording dots having refractive indexes different from those of the vicinities thereof are formed inside a recording medium, it is hard to make recording quality and a recording density compatible. Therefore, a plurality of dots are recorded at a predetermined dot pitch, and then other dots are recorded between the recorded dots.
摘要:
An optical information storage medium includes a multilayer film that includes a plurality of extruded alternating active data storage layers and buffer layers, which separate the active data storage layers. The active data storage layers and buffer layers have thicknesses that allow the active data storage layers to be writable by non-linear or threshold writing processes to define data voxels within the active data storage layers that are readable by an optical reading device.
摘要:
In a multilayer optical disc having information layers conforming to a plurality of different optical disc standards, because the type of each information layer is not recorded in the other information layers, in read and write operations by a compatible optical disc device conforming to a plurality of optical disc standards, every time the information layer being accessed changes, it has been necessary to read the type of the information layer and select a method of generating a tracking error signal adapted to the type of information layer, so access has taken time. In order to solve the above problem, in the optical multilayer disc according to the present invention, having information layers conforming to a plurality of different optical disc standards, in an area in one of the information layers, information about the other information layers is recorded. The time required to access the other information layers can be reduced by using this information to select a tracking error signal generating method.
摘要:
The present invention provides an improved file system format for an optical disc to help prevent illegal copying of multimedia content, where certain non-readable data record is placed into increased measured length of a multimedia data block; disc made pursuant to present format allows normal playback with very low level noise that would not affect the user enjoyment of viewing/listening the movie or music content on the multimedia disc.
摘要:
When a simple magnification optical system is used in reproduction of a recording medium in which a large number of minute modified regions are three-dimensionally formed inside solid matter, contrast is insufficient and interlayer crosstalk is increased, and therefore, it is impossible to take a sufficient S/N ratio. Provided is a recording medium in which at least one layer is configured by a set of two adjacent sub-layers, and dots on a sub-layer correspond to a recording data ‘1’ and dots on the other sub-layer correspond to ‘0’. These data are played back.
摘要:
An optical information recording medium has a first information recording layer (20) and a second information recording layer (40) each of which includes (i) a group of pre-pits (31, 51) constituting marks (32, 52) and spaces (33, 53) and (ii) a super-resolution film (23, 43), the marks (32, 52) and the spaces (33, 53) having different lengths, an average length of a smallest mark that is smallest in length and a smallest space that is smallest in length being less than or equal to a resolution limit of a reproduction optical system for reproducing information recorded on the first information recording layer (20) and the second information recording layer (40), the group of pre-pits (31, 51) being formed so that a push-pull signal for the reproduction optical system to reproduce the information recorded by the group of pre-pits is negative in polarity. This provides an inexpensive and high-capacity multilayer optical information recording medium based on a super-resolution technology.
摘要:
The present techniques present methods and systems for increasing a data reading rate on optical data disks using a single reading head. The methods take advantage of the difference between a mean focal distance (MFD), or minimum spacing that the detector can distinguish between bits, and the minimum separation of bits in a single track to increase the reading speed. As the bits may be more closely spaced across adjacent tracks or layers, these techniques may be used to increase the reading speed of the disk. Specifically, the data symbols that make up a single bit-stream may be stored in a pattern horizontally across adjacent tracks, or vertically across adjacent layers. Accordingly, the focal point of the detector is scanned across the disk in the same pattern to read the individual data symbols.