Abstract:
A photo diode includes an intrinsic region on a substrate, a P+ doping region in a first portion of the intrinsic region, and an oxide semiconductor region. The oxide semiconductor region is spaced apart from the P+ doping region on a second portion of the intrinsic region and the second portion of the intrinsic region is different from the first portion of the intrinsic region.
Abstract:
A method of manufacturing a display device is disclosed. In one embodiment, the method includes: i) forming a semiconductor layer where a plurality of crystallized areas and a plurality of noncrystallized areas are alternately arranged on a substrate, ii) aligning the substrate based on a difference in contrast ratio between the crystallized and noncrystallized areas and iii) performing a photo process or a photolithography process.
Abstract:
An organic light emitting diode display is disclosed. The organic light emitting diode display includes: a substrate including a first region and a second region, a first gate electrode formed over the first region, a second gate electrode formed over the second region, a first gate insulator formed on the first gate electrode, a second gate insulator formed on the second gate electrode, a first semiconductor layer formed on the first gate insulator, the first semiconductor layer including a first channel region, a second semiconductor layer formed on the second gate insulator, the second semiconductor layer including a second channel region, an interlayer insulator formed over the substrate and over at least part of the first and second semiconductor layers, a first etching stop layer formed over the first channel region and surrounded by the interlayer insulator, a second etching stop layer formed over the second channel region and surrounded by the interlayer insulator, a first source electrode and a first drain electrode contacting the first semiconductor layer through the interlayer insulator, and a second source electrode and a second drain electrode contacting the second semiconductor layer through the interlayer insulator.
Abstract:
Provided are a crystallization apparatus and method, which prevent cracks from being generated, a method of manufacturing a thin film transistor (TFT), and a method of manufacturing an organic light emitting display apparatus. The crystallization apparatus includes a chamber for receiving a substrate, a first flash lamp and a second flash lamp, which are disposed facing each other within the chamber, wherein amorphous silicon layers are disposed on a first surface of the substrate facing the first flash lamp and a second surface of the substrate facing the second flash lamp, respectively.
Abstract:
An array substrate includes storage lines, a first pixel portion, a second pixel portion, a third pixel portion and a fourth pixel portion. The storage lines divide a region into a first pixel area, a second pixel area, a third pixel area and a fourth pixel area. Two gate lines and two data lines define the region. The two gate lines are adjacent and substantially parallel to each other. The two data lines are adjacent and substantially parallel to each other. The first, second, third and fourth pixel portions are formed in the first, second, third and fourth pixel areas, respectively.
Abstract:
A liquid crystal display apparatus includes an array substrate, a color filter substrate and a liquid crystal layer. The array substrate includes a transparent substrate, a plurality of pixel electrodes, a plurality of switching devices, a data line, a gate line and a light blocking pattern. The light blocking pattern is disposed on the transparent substrate. The light blocking pattern overlaps with at least a portion of the pixel electrodes neighboring each other and at least a portion of the data line. The light blocking pattern is disposed between the data line and the transparent substrate.
Abstract:
A driver chip for controlling a high-resolution display panel is presented. The driver chip is not much larger than a conventional driver chip that is currently used for lower resolution display panels. The driver chip applies data signals to the data lines of the display panel and gate control signals to a gate driver that is formed in the peripheral region of the display panel. The gate driver, which may be made of amorphous silicon TFTs, generates gate signals in response to the gate control signals from the driver chip and applies the gate signals to gate lines. Since the driver chip of the invention controls more gate lines and data lines than a conventional chip of about the same size, the driver chip may be easily adapted for display devices having multiple panels. Where multiple panels are used, the panels may be scanned simultaneously or sequentially.
Abstract:
A thin film transistor liquid crystal display (TFT-LCD) of a line inversion type for block-driving data lines is provided which can prevent a block defect. In accordance with the feature of the present invention, the TFT-LCD includes an extension part such as an extension piece overlapping with a pixel electrode of boundary pixels at a boundary data line applying a data signal to the boundary pixels.
Abstract:
A substrate for a display device has a reduced size and weight. Connecting lines are formed on peripheral region adjacent to display region of a display device, and scan driving signal is applied to scan lines through the connecting lines. The connecting lines includes first connecting lines and second connecting lines. The first connecting lines are formed in a same layer as the scan lines, and the second connecting lines are formed in a same layer as the data lines. The total area of the wirings formed in the peripheral region is reduced, and the size and weight of the liquid crystal display device may be reduced.
Abstract:
Disclosed are a liquid crystal display device and a method for manufacturing the same, in which wirings connected between pads and an integrated circuit is protected from being corroded. A pixel array is formed on a display region of a substrate. A plurality of pads are formed on a non-display region of the substrate. An integrated circuit is formed on the non-display region of the substrate and connected to the pads to generate a signal for operating the pixel array. Conductive barrier layers separated from each of the pads are formed on peripheral portions of the pads connected to the integrated circuit. The conductive barrier layers have electric potential equivalent to that of each of the pads in accordance with internal connections of the integrated circuit. When bumps of the integrated circuit and the pads are attached to each other, the conductive barrier layers prevent the pads and the wirings connected to the pads from being corroded.