Abstract:
Some embodiments of the image editing and organizing application described herein provide an automatic enhancement process that includes a shadow lift adjustment. The process takes an input image and enhances the contrast of darker parts of the image. The process uses a structure histogram to determine an amount of shadow lift adjustment to apply to the image. The process tempers this adjustment based on an International Organization for Standardization (ISO) value of the image.
Abstract:
Some embodiments provide a method of operating a device to capture an image of a high dynamic range (HDR) scene. Upon the device entering an HDR mode, the method captures and stores multiple images at a first image exposure level. Upon receiving a command to capture the HDR scene, the method captures a first image at a second image exposure level. The method selects a second image from the captured plurality of images. The method composites the first and second images to produce a composite image that captures the HDR scene. In some embodiments, the method captures multiple images at multiple different exposure levels.
Abstract:
Some embodiments provide several on-image tools of image editing application for applying effects to an image. Some on-image tools are visible to the user and are overlaid on the image. Some on-image tools are not visible. The tools are for receiving a selection of a location of the image and for applying effects to at least an area of the image that does not include the location of the image.
Abstract:
Some embodiments of the image editing and organizing application described herein provide an automatic enhancement process that includes vibrancy adjustment. The vibrancy adjustment increases the saturation of multiple pixels. The saturation of each pixel is determined by subtracting the lowest component value from the highest component value. The process determines an overall saturation of the image using a histogram. The histogram is generated using doubled saturation values for pixels with blue and green as the highest component value.
Abstract:
Some embodiments provide a method of automatically color balancing an image. The method receives a selection of a user interface (UI) item to automatically color balance the image using a color balance tool that includes several color balance modes. In response to the selection, the method analyzes the image based on a set of criteria. Based on the analysis, the method automatically selects a color balance mode from the several color balance modes of the color balance tool. Upon selecting the color balance mode, the method uses the color balance mode to automatically apply a set of color balance operations to the image.
Abstract:
Some embodiments provide a novel user interface (UI) tool that is a unified slider control, which includes multiple sliders that slide along a region. The region is a straight line in some embodiments, while it is an angular arc in other embodiments. In some embodiments, the unified slider control is used in a media editing application to allow a user to modify several different properties of the image by moving several different sliders along the region. Each slider is associated with a property of the image. A position of the slider in the region corresponds to a value of the property associated with the slider.