摘要:
Area information is obtained with respect to a specified color and nozzle position having color unevenness. Then, coordinate information indicating a nozzle position corresponding to the above area information is obtained in a printing head or nozzle array corresponding to an ink color relating to the specified color information. Next, the number of candidate correction values or candidate patches is obtained on the basis of nozzle coordinates obtained corresponding to the area, by referring to a table. In this table, for example, the number of candidate correction values is small at a nozzle position where an effect due to the variations of nozzle ejection characteristics such as a nozzle ejection volume is small and a change direction is constant, and the number of candidate correction values is large at a nozzle position where an effect due to variations of nozzle ejection characteristics is large.
摘要:
When printing an image using a plurality of inks, color unevenness caused by variations in ejection characteristics among nozzles is corrected at suitable timings in accordance with change in the color unevenness over time, and favorable image output without noticeably color unevenness is maintained. For this purpose, parameters are prepared, for colors formed by combinations of at least two colors of ink, the parameters being determined so as to reduce differences in coloration on a print medium caused by individual variations in the ejection characteristics of a plurality of nozzles. When printing, a first color signal included in individual pixels is corrected for a second color signal by using the parameters. Information regarding the ejection volume characteristics of a plurality of nozzles is acquired as appropriate, and by estimating changes in coloration from this information, suitable timings for overwriting such parameters are determined.
摘要:
When an image is recorded using a multichip recording head including a plurality of chips each having a plurality of nozzle arrays, a change in image density can occur due to a registration error between chips in an overlapping part where two chips are connected. To suppress the change in image density, input image data is distributed to two chips such that there are dots overlapping each other between the two chips in the overlapping part.
摘要:
An adaptor which mediates between an image supply device and a printer causes the printer to print by selecting either of the first operation mode in which image data from the image supply device is received by wireless communication and before the completion of receiving the image data, a print job is issued to the printer by wired communication, and the second operation mode in which image data from the image supply device is received by wireless communication and after the completion of receiving the image data, a print job is issued to the printer by wired communication.
摘要:
An image processing apparatus and an image processing method are provided which, when forming an image using a plurality of different inks, can produce a satisfactory image free from problematical levels of density unevenness, graininess and insufficient density with any of these inks. To this end, when printing on pixel areas of a print medium by a plurality of relative movements between the printing unit and the print medium, the dot overlap rate of an ink that tends to show density unevenness is set higher than that of an ink that tends to show other image impairments more conspicuously than the density unevenness. This results in a good image that eliminates such image impairments as density unevenness, graininess and density insufficiency in the entire color gamut.
摘要:
When dividing multi-valued data and generating data for two-pass multi-pass printing, in addition to divided multi-valued data that are divided for each of the two passes, divided multi-valued data that is common to both of the two passes is generated. Moreover, quantized data of that common multi-valued data is reflected onto the quantized data for each pass. Furthermore, when generating quantized data, division ratios that are used when generating the common data by the multi-valued data division described above are set according to the image characteristics (whether or not the area is flesh color) of the multi-valued data. Thereby, it is possible to perform high-quality printing regardless of the image characteristics by taking a suitable balance between suppressing density unevenness and suppressing graininess.
摘要:
There is provided an image processing apparatus for applying an adjusting process to an image including multicolor image signals. An image area including a pixel to be processed is extracted, and one representative signal value is generated from signal values corresponding to a plurality of colors of pixels included in the image area (S2501). A feature amount associated with the image area is calculated based on the representative signal value (S2503, S2505, S2511), and a substitute candidate pixel common to the plurality of colors is selected from the image area based on the calculated feature amount (S2512). Signal values of the pixel to be processed are substituted by new pixel values, which are calculated from the signal values of the pixel to be processed and signal values of the substitute candidate pixel.
摘要:
In order to eliminate image deterioration based on the characteristics of an output device upon execution of edge emphasis processing, an image processing apparatus includes a setting unit which sets a print characteristic on the print medium, a region setting unit which sets a region, a brightness value derivation unit which derives brightness values, a first derivative derivation which derives first derivatives of the brightness values, an edge direction determination unit which determines an edge direction of brightness, an emphasis level determination unit which determines an emphasis level of a pixel value based on the first derivatives, and a replacement unit which calculates second derivatives of brightness values and replaces a pixel value of a pixel of interest based on the sign of the second derivative.
摘要:
The present invention suppresses data processing load and processing time when generating density data for the same color that corresponds to a plurality of printing scans (or plurality of printing element groups) of a printing head and printing medium. In order to accomplish this, input image data is converted to a plurality of density data by referencing a three-dimensional lookup table that performs one-to-one correlation of input image data with a plurality of density data that corresponds to a plurality of relative movements (or plurality of printing element groups). By doing so, it is possible to perform a process of generating density data (CMYK) that corresponds to a plurality of relative movements (or plurality of printing element groups) from input image data at once, and thus it is possible to suppress an increase in data processing load and processing time.
摘要:
When recording is performed in a pixel region by M (M is an integer equal to or larger than 2) passes with N (N is an integer equal to or larger than 2) recording element groups, density variation due to a deviation between recording positions of dots that are recorded by different passes is suppressed while a load of data processing is decreased.First, multivalued image data (24-1 to 24-2) corresponding to the M passes is generated from input image data, and the multivalued image data corresponding to the M passes is quantized to generate quantized data (26-1 to 26-2) corresponding to the M passes. Then, the quantized data corresponding to the M passes is divided into quantized data being complements of each other and corresponding to the N recording element groups. Accordingly, the quantized data (28-1 to 28-4) corresponding to the M passes for the N recording element groups is obtained. With this configuration, the density variation due to the deviation between the recording positions by the M passes can be suppressed. Also, since the number of pieces of data subjected to the quantization is small, the load of the quantization can be decreased.