Abstract:
The disclosed embodiments relate to the manufacture of a precursor co-precipitate material for a cathode active material composition. During manufacture of the precursor co-precipitate material, an aqueous solution containing at least one of a manganese sulfate and a cobalt sulfate is formed. Next, a NH4OH solution is added to the aqueous solution to form a particulate solution comprising irregular secondary particles of the precursor co-precipitate material. A constant pH in the range of 10-12 is also maintained in the particulate solution by adding a basic solution to the particulate solution.
Abstract:
An electronic device. The electronic device may include a battery, and a charging system in electronic communication with the battery. The charging system may be configured to charge at least a partially-depleted battery to a threshold charge value, discontinue the charging in response to the battery being charged to the threshold charge value, and monitor the function of the electronic device to detect at least one of an anticipated event, and an unanticipated event of the electronic device. Additionally the charging system may be configured to recharge the battery in response to detecting one of: the anticipated event occurring a predetermined time subsequent to the recharging of the battery, or the unanticipated event occurring immediately before the recharging of the battery.
Abstract:
The disclosed embodiments provide a lithium-polymer battery cell. The lithium-polymer battery cell includes an anode and a cathode containing lithium cobalt oxide particles doped with a doping agent. The lithium-polymer battery cell also includes a pouch enclosing the anode and the cathode, wherein the pouch is flexible. The cathode may allow a charge voltage of the lithium-polymer battery cell to be greater than 4.25V.
Abstract:
A compound represented by LiαCo(1-x-2y)Mex(M1M2)yOδ, (Formula (I)) wherein Me, is one or more of Li, Mg, Al, Ca, Ti, Zr, V, Cr, Mn, Fe, Ni, Cu, Zn, Ru and Sn, and wherein 0≦x≦0.3, 0
Abstract:
Compounds, powders, and cathode active materials that can be used in lithium ion batteries are described herein. Methods of making such compounds, powders, and cathode active materials are described.
Abstract:
Compounds, powders, and cathode active materials that can be used in lithium ion batteries are described herein. Methods of making such compounds, powders, and cathode active materials are described.
Abstract:
An electronic device. The electronic device may include a battery, and a charging system in electronic communication with the battery. The charging system may be configured to charge at least a partially-depleted battery to a threshold charge value, discontinue the charging in response to the battery being charged to the threshold charge value, and monitor the function of the electronic device to detect at least one of an anticipated event, and an unanticipated event of the electronic device. Additionally the charging system may be configured to recharge the battery in response to detecting one of: the anticipated event occurring a predetermined time subsequent to the recharging of the battery, or the unanticipated event occurring immediately before the recharging of the battery.
Abstract:
The disclosed embodiments provide a system that manages use of a battery in a portable electronic device. During, operation, the system monitors indicators of user behavior associated with charging and discharging of the battery in the portable electronic device by a user, wherein the indicators of user behavior can include a state-of-charge of the battery, a charging pattern associated with charging of the battery, usage of applications on the portable electronic device, a user setting on the portable electronic device, a scheduled event or alarm on the portable electronic device, a power consumption pattern on the portable electronic device, a time of day, or the location of the portable electronic device. Next, the system modifies a charging technique for the battery based on the monitored indicators of user behavior to manage at least one of a cycle life of the battery, swelling in the battery, and a runtime of the battery.
Abstract:
The disclosed embodiments provide a system that manages use of a battery corresponding to a high-voltage lithium-polymer battery in a portable electronic device. During operation, the system monitors a cycle number of the battery during use of the battery with the portable electronic device, wherein the cycle number corresponds to a number of charge-discharge cycles of the battery. If the cycle number exceeds one or more cycle number thresholds, the system modifies a charging technique for the battery to manage swelling in the battery and use of the battery with the portable electronic device.