Abstract:
The present invention provides recombinant proteins comprising the amino acid sequence of an intracellular segment of CD40 and an amino acid sequence mediating the association of the recombinant protein with the constant region of an immunoglobulin heavy chain. The recombinant proteins according to the present invention are useful for inducing clonal expansion of a B cell having a predetermined antigen-specificity without the need for T cell or CD40L mediated co-stimulation. Thus, the present invention provides tools for clonal expansion of B cells specific for an antigen of interest and the production of B cells secreting antibodies specific for an antigen of interest. The recombinant proteins of the present invention may also be used for generating fully human monoclonal antibodies with a predetermined antigen-specificity from the B cell repertoire of a human subject.
Abstract:
The present invention is in the field of immunotherapy, in particular tumor immunotherapy. The present invention provides pharmaceutical formulations for delivering RNA to antigen presenting cells such as dendrite cells (DCs) in the spleen after systemic administration. In particular, the formulations described herein enable to induce an immune response after systemic administration of antigen-coding RNA.
Abstract:
The present invention relates to fusion molecules of antigens, the nucleic acids coding therefor and the use of such fusion molecules and nucleic acids. In particular, said invention relates to fusion molecules, comprising an antigen and the trans-membrane region and cytoplasmic region of a MHC molecule and/or the cytoplasmic region of a MHC or a SNARE molecule.
Abstract:
The invention relates to identifying tumor-associated genetic products and encoding nucleic acids thereof. A therapy and diagnosis of diseases in which the tumor-associated genetic products are aberrantly expressed, proteins, polypeptides and peptides which are expressed in association with tumor and the encoding nucleic acids for said proteins, polypeptides and peptides are also disclosed.
Abstract:
The present invention provides binding agents comprising at least three binding domains, wherein a first binding domain binds to a T cell-specific antigen and a second binding domain and a third binding domain bind to a claudin, and methods of using these binding agents or nucleic acids encoding therefor for treating cancer.
Abstract:
The present invention provides methods for de-differentiating somatic cells into stem-like cells without generating embryos or fetuses. More specifically, the present invention provides methods for effecting the de-differentiation of somatic cells to cells having stem cell characteristics, in particular pluripotency, by introducing RNA encoding factors inducing the de-differentiation of somatic cells into the somatic cells and culturing the somatic cells allowing the cells to de-differentiate.
Abstract:
The present invention provides binding agents that contain n binding domain that is specific for CD3 allowing binding to T cells and a binding domain that is specific for a tumor-associated claudin molecule and methods of using these binding agents or nucleic acids encoding therefor for treating cancer.
Abstract:
The present invention relates to tumor immunotherapy, in particular to tumor vaccination, using chimeric proteins comprising all or a portion of a hepatitis B virus core antigen protein and an amino acid sequence comprising an epitope derived from the extracellular portion of a tumor-associated antigen. In particular, the present invention provides virus-like particles comprising said chimeric proteins, which are useful for eliciting a humoral immune response in a subject against the tumor-associated antigen, in particular against cells carrying said tumor-associated antigen on their surface, wherein the tumor-associated antigen is a self-protein in said subject.
Abstract:
The present invention provides binding agents comprising at least three binding domains, wherein a first binding domain binds to a T cell-specific antigen and a second binding domain and a third binding domain bind to a claudin, and methods of using these binding agents or nucleic acids encoding therefor for treating cancer.