Abstract:
An array substrate includes a base substrate, a plurality of first signal lines extending in a first direction, a plurality of second signal lines located on a different layer from the first signal lines and extending in a second direction intersecting the first direction, and a plurality of touch signal lines extending in the second direction disposed on the base substrate. Each touch signal line includes a first touch line segment and a second touch line segment, the first touch line segment disposed on the same layer as the first signal lines, and at least partially overlapping with at least one of the second signal lines in a direction perpendicular to a surface of the base substrate, the second touch line segment disposed on a different layer from the first signal lines, and the first touch line segment electrically connected with the second touch line segment through a first via.
Abstract:
An in-cell touch display panel includes a display area. The display area includes a plurality of touch zones arranged in an array, one or more touch scanning lines corresponding to a respective row of the touch zones, and touch reading lines that have a one-to-one correspondence with the touch zones. Each of the touch zones includes at least one touch module, each touch module includes a photosensitive unit and a touch reading unit, an output end of the photosensitive unit is connected to an input end of the touch reading unit, a control end of the touch reading unit is connected to a corresponding touch scanning line, and an output end of the touch reading unit is connected to a corresponding touch reading line.
Abstract:
A field sequential display panel, a field sequential display device and a driving method are provided. The field sequential display panel includes: a lower substrate, including a base substrate and a plurality of pixel units disposed on the base substrate, each of the plurality of pixel units including a thin film transistor; an upper substrate; and a liquid crystal layer, located between the lower substrate and the upper substrate; an OLED light source, disposed on a side of the base substrate away from the thin film transistor, which is configured for providing trichromatic light for each of the plurality of pixel units, the OLED light source including: a plurality of trichromatic light source units, each trichromatic light source unit including a sub-light-source of a first color, a sub-light-source of a second color and a sub-light-source of a third color, the first color, the second color and the third color are colors different from each other. With the field sequential display panel, the field sequential display device and the driving method, when a color field sequential display method is used, requirement on response time of a liquid crystal can be reduced.
Abstract:
The present invention relates to a display method of a display panel, a display panel and a display device, and the display method of a display panel is used for enabling each row of N pixel units in the display panel to display an image having 2N+x−1 pixel points. The display method comprises steps of: acquiring an image, each row of which comprises 2N+x−1 pixel points corresponding to the N pixel units; and determining a display parameter of each sub-pixel according to the components, which have the same color as the sub-pixel, in the pixel points corresponding to the sub-pixel.
Abstract:
A field-sequential display panel, a field-sequential display apparatus and a driving method are provided. The field-sequential display apparatus includes a liquid crystal display panel and an OLED light source arranged at one side of the liquid crystal display panel where light is incident to provide trichromatic light for pixel cells of the liquid crystal display panel. The OLED light source includes multiple groups of trichromatic light sources, each of the groups of trichromatic light sources includes a first color sub-light source, a second color sub-light source and a third color sub-light source, and each sub-light source includes an anode, a cathode and a light emitting layer between the anode and the cathode.
Abstract:
A 3D grating, a color filter substrate, a display device and a control method thereof are provided. The 3D grating comprises: a first transparent electrode layer; a second transparent electrode layer; and an electrochromic material layer formed between the first transparent electrode layer and the second transparent electrode layer; wherein the first transparent electrode layer comprises a pattern of strip-shaped electrodes, which comprises a plurality of strip-shaped electrodes and an electrode wire electrically connected with each of the strip-shaped electrodes in the pattern; and wherein the electrochromic material layer is configured to be non-transparent when it is in an electric field and to be transparent when it is not in an electric field, or the electrochromic material layer is configured to be transparent when it is in an electric field and to be non-transparent when it is not in an electric field.
Abstract:
A pixel structure, a driving method thereof and a display device are provided. The pixel structure includes a plurality of closely arranged repeating groups, and each of the repeating groups includes linearly arranged square pixel units of different colors. Each of the square pixel units in each of the repeating groups is formed by two sub-pixels with a same color and a same shape; and two sub-pixels in adjacent square pixel units have different arrangement modes. The repeating groups disposed on two adjacent parallel straight lines are staggered by a distance of one and a half square pixel units. With such a pixel structure, input information is subjected to brightness redistribution and intensively outputted to the actual physical positions, the optional switching of the sub-pixels can be applied on the premise of not reducing the pixel size, and hence the resolution of the display image can be improved.
Abstract:
An image display method is disclosed. The image display method is adapted to a delta pixel arrangement display device, and the delta pixel arrangement display device includes M×N second pixels arranged in form of an M×N matrix. The display method includes: acquiring raw data of a frame of image, the raw data including luminance information of a*M×b*N first pixels arranged in form of an a*M×b*N matrix, where a≧1, b≧1 and a×b≠1, the first pixels arranged in strip and the first pixel at least including sub-pixels with three different colors RGB; converting the raw data into display data, the display data including luminance information of M×N second pixels, and each of the second pixels at least comprising respective sub-pixels of corresponding one of the first pixels; and displaying an image according to the display data. An image display apparatus and a delta pixel arrangement display device are further disclosed.
Abstract:
An organic light-emitting diode display unit, a driving method thereof and a display device are disclosed. At least part of pixel units are pixel units each with a stacked structure; each pixel unit with the stacked structure includes two adjacent subpixel unit stacked groups; and each subpixel unit stacked group includes at least two subpixel units which have different emitting colors and are stacked and insulated from each other. During display of different image frames, each subpixel unit stacked group in each pixel unit with the stacked structure can display gray-scale effect of at least two colors based on applied signals. Compared with an approach that each subpixel unit can only display gray-scale effect of only one color for different image frames, the display effect can be improved.
Abstract:
An array substrate, a display device, and a drive-for-heating method for the display device. The array substrate includes: pixel units on a first base substrate; a data line on the first base substrate; a touch signal line on the first base substrate; a heating element on the first base substrate, and configured to generate heat under driving of a drive-for-heating current; a common electrode on the first base substrate and reused as a touch electrode; and a pixel electrode on the first base substrate. The thin film transistor includes an active layer in a semiconductor layer and a gate electrode in a first conductive layer. The data line is in a second conductive layer, one of the pixel electrode and the common electrode is in a third conductive layer, and a layer where the heating element is located is between the semiconductor layer and the third conductive layer.