摘要:
A method is provided for forming a split-gate flash memory cell having a shallow trench isolation without the intrusion of a “smiling” gap near the edge of the trench encompassing the first polysilicon layer. This is accomplished by forming two conformal layers lining the interior walls of the trench. An exceptionally thin nitride layer overlying the first conformal oxide layer provides the necessary protection during the oxidation of the first polysilicon layer so as to prevent the “smiling” effect normally encountered in fabricating ultra large scale integrated circuits.
摘要:
In this invention bit lines are ion implanted into a semiconductor substrate in columns beside floating gates of an array of flash memory cells. A control gate overlays each row floating gates and operates as a word lines for the rows of flash memory cells. Each bit line serves a dual purpose of providing a drain for one cell and a source for the adjacent cell. The flash memory cells are programmed, erased and read depending upon the voltages applied to the buried bit lines and the word line structured as a control gate that extends the length of each row. By implanting the bit lines into the semiconductor substrate the flash memory cell can be made smaller improving the density of the flash memory.
摘要:
In this invention bit lines are ion implanted into a semiconductor substrate in columns beside floating gates of an array of flash memory cells. A control gate overlays each row floating gates and operates as a word lines for the rows of flash memory cells. Each bit line serves a dual purpose of providing a drain for one cell and a source for the adjacent cell. The flash memory cells are programmed, erased and read depending upon the voltages applied to the buried bit lines and the word line structured as a control gate that extends the length of each row. By implanting the bit lines into the semiconductor substrate the flash memory cell can be made smaller improving the density of the flash memory.
摘要:
A method of forming split gate electrode MOSFET devices comprises the following steps. Form a tunnel oxide layer over a semiconductor substrate. Form a floating gate electrode layer over the tunnel oxide layer. Form a masking cap over the floating gate electrode layer. Pattern a gate electrode stack formed by the tunnel oxide layer and the floating gate electrode layer in the pattern of the masking cap. Form intermetal dielectric and control gate layers over the substrate covering the stack and the source regions and the drain regions. Pattern the intermetal dielectric and control gate layers into adjacent mirror image split gate electrode pairs. Pattern a source line slot in the center of the gate electrode stack down to the substrate. Form source regions through the source line slot. Form drain regions self-aligned with the split gate electrodes and the gate electrode stack.
摘要:
A method for forming a square oxide structure or a square floating gate without a rounding effect at its corners. A first dielectric layer is formed on a pad layer for a square oxide structure or a polysilicon layer overlying a gate oxide layer for a floating gate, and a second dielectric layer is formed on the first dielectric layer. The second dielectric layer is patterned to form parallel openings in a first direction using a first photosensitive mask. A second photosensitive mask, having a plurality of parallel openings in a second direction perpendicular to the first direction is formed over the second dielectric layer and the first dielectric layer. The first dielectric layer is etched through square openings where the openings in the second photosensitive mask and the openings in the second dielectric layer intersect, thereby forming square openings in the first dielectric layer. The second photosensitive mask and the second dielectric layer are removed. The square oxide structure is completed by etching a trench in the semiconductor structure and forming an STI or LOCOS. The square floating gate is completed by growing polysilicon oxide structures in the square openings in the first dielectric layer and removing the first dielectric layer to form a pattern of openings therebetween, and etching the polysilicon layer through the pattern of openings between the polysilicon oxide structures forming square floating gate polysilicon regions under the polysilicon oxide hard masks.
摘要:
A method is disclosed for forming a split-gate flash memory cell where the floating gate of the cell is self-aligned to isolation, to source and to word line. This multi-self-aligned structure, which provides the maximum shrinkage of the cell that is possible, is also disclosed. The multi-self-alignment is accomplished by first defining the floating gate at the same time the trench isolation is formed, and then self-aligning the source to the floating gate by using a nitride layer as a hard mask in place of the traditional polyoxide, and finally forming a polysilicon spacer to align the word line to the floating gate. Furthermore, a thin floating gate is used to form a thin and sharp poly tip through the use of a “smiling effect” to advantage. The tip substantially decreases the coupling ratio of the floating gate to the word line for fast erasing speed, while at the same time increasing the coupling of the source to the floating gate with the attendant increase in the programming speed of the split gate flash memory cell.
摘要:
A method is disclosed for forming a split-gate flash memory cell having a salicidated control gate and self-aligned contacts. Salicidation is normally performed with single gate devices, such as logic devices. In a split-gate where the control gate overlays the floating gate with an intervening intergate oxide layer, it is conventionally incompatible to form self-aligned silicides over the control gate due to its position at a different level from that of the floating gate. Furthermore, oxide spacers that are normally used are inadequate when applied to memory cells. It is shown in the present invention that by a judicious use of an additional nitride/oxide layer over the control gate, oxide spacers can now be used effectively to delineate areas on the control gate that can be silicided and also self-aligned. Hence, with this method, salicidation and self-aligned contact techniques can be used not only on the same VLSI and ULSI chips having both peripheral logic devices and memory devices, but also in memory devices themselves.
摘要:
A method is disclosed for forming a split-gate flash memory cell having a salicidated control gate and self-aligned contacts. Salicidation is normally performed with single gate devices, such as logic devices. In a split-gate where the control gate overlays the floating gate with an intervening intergate oxide layer, it is conventionally incompatible to form self-aligned silicides over the control gate due to its position at a different level from that of the floating gate. Furthermore, oxide spacers that are normally used are inadequate when applied to memory cells. It is shown in the present invention that by a judicious use of an additional nitride/oxide layer over the control gate, oxide spacers can now be used effectively to delineate areas on the control gate that can be silicided and also self-aligned. Hence, with this method, salicidation and self-aligned contact techniques can be used not only on the same VLSI and ULSI chips having both peripheral logic devices and memory devices, but also in memory devices themselves.
摘要:
A method is disclosed for forming a split-gate flash memory cell where the floating gate of the cell is self-aligned to isolation, to source and to word line. This multi-self-aligned structure, which provides the maximum shrinkage of the cell that is possible, is also disclosed. The multi-self-alignment is accomplished by first defining the floating gate at the same time the trench isolation is formed, and then self-aligning the source to the floating gate by using a nitride layer as a hard mask in place of the traditional polyoxide, and finally forming a polysilicon spacer to align the word line to the floating gate. Furthermore, a thin floating gate is used to form a thin and sharp poly tip through the use of a “smiling effect” to advantage. The tip substantially decreases the coupling ratio of the floating gate to the word line for fast erasing speed, while at the same time increasing the coupling of the source to the floating gate with the attendant increase in the programming speed of the split gate flash memory cell.
摘要:
A method is disclosed for forming a split-gate flash memory cell where the floating gate of the cell is self-aligned to a shallow trench isolation (STI), which in turn makes it self-aligned to source and to word line. This will advantageously affect a shrinkage in the size of the memory cell. In a first embodiment, the close self-alignment is made possible through a new use of an anti-reflective coating (ARC) in the various process steps of the making of the cell. In the second embodiment, a low-viscosity material is used in such a manner so as to enable self-alignment of the floating gate to the STI in a simple way.