Abstract:
The disclosure includes methods of accessing audio-visual content from various sources. One combination includes a method employing a portable device including a processor, microphone and an interface to receive user inputs, the portable device also including a display screen, the method also utilizing a remote computer system comprising a database, the method comprising: receiving a first user request, through the interface, for processing audio content captured with the microphone; processing the audio to yield fingerprint data; communicating the fingerprint data and portable device or user information to the remote computer system; in response to said communicating, receiving source information to enable the portable device access to audio-visual content from a particular source which is remote from the remote computer system, in which the database includes source rules, in which the remote computer system utilizes the portable device or user information to identify user preferences or profile data, and uses identified user preferences or profile data and the source rules to choose the particular source. Of course other methods, combinations and systems are disclosed as well.
Abstract:
Arrangements involving portable devices (e.g., smartphones and tablet computers) are disclosed. One arrangement enables a content creator to select software with which that creator's content should be rendered—assuring continuity between artistic intention and delivery. Another utilizes a device camera to identify nearby subjects, and take actions based thereon. Others rely on near field chip (RFID) identification of objects, or on identification of audio streams (e.g., music, voice). Some technologies concern improvements to the user interfaces associated with such devices. For example, some arrangements enable discovery of both audio and visual content, without any user requirement to switch modes. Other technologies involve use of these devices in connection with shopping, text entry, and vision-based discovery. Still other improvements are architectural in nature, e.g., relating to evidence-based state machines, and blackboard systems. Yet other technologies concern computational photography. A great variety of other features and arrangements are also detailed.
Abstract:
The disclosure relates to accessing computer resources by sensing audio with a microphone. One claim recites a method comprising: obtaining data in a first user's cell phone, the data corresponding to microphone-captured audio; responsive to the data, the first user's cell phone receiving a service provided by a first party, the service comprising facilitating access to a computer resource over a network; in which the first user does not provide a fee to the first party for the service, as the first party bills a charge connected with the service to a sponsoring party. Of course, other claims and combinations are provided as well.
Abstract:
The present technology concerns cell phones and other portable devices, and more particularly concerns use of such devices in connection with media content (electronic and physical) and with other systems (e.g., televisions, digital video recorders, and electronic program directories). In certain arrangements, identification of audio or visual content to which the user is being exposed is determined—in part—using information about one or more other people who are known to be present with the user. Information about the user's current location, or about the user's previous activities, can also be used in inferring the identity of content to which the user is currently being exposed. A great number of other features and arrangements are also detailed.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
Abstract:
A decade from now, a visit to the supermarket will be a very different experience than the familiar experiences of decades past. Product packaging will come alive with interactivity—each object a portal into a rich tapestry of experiences, with contributions authored by the product brand, by the store selling the product, and by other shoppers. The present technology concerns arrangements for authoring and delivering such experiences. A great variety of other features and technologies are also detailed.
Abstract:
Self-checkout technologies for retail stores are improved by incorporation of enhanced fraud detection arrangements. For example, if a shopper enters an item on a self-checkout tally, while positioned at a location remote from the normal stock location for that item, a responsive action may be taken. Likewise, if a shopper enters the same item on a self-checkout tally twice, at widely separated times, a responsive action may be taken. These responsive actions can include dispatching a store clerk to assist the shopper, or increasing a risk score that is repeatedly re-calculated during the shopper's visit. A great variety of other features and arrangements (e.g., powering arrangements for mobile phones in shopping carts) are also detailed.
Abstract:
Arrangements involving portable devices (e.g., smartphones and tablet computers) are disclosed. One arrangement enables a content creator to select software with which that creator's content should be rendered—assuring continuity between artistic intention and delivery. Another utilizes a device camera to identify nearby subjects, and take actions based thereon. Others rely on near field chip (RFID) identification of objects, or on identification of audio streams (e.g., music, voice). Some technologies concern improvements to the user interfaces associated with such devices. Others involve use of these devices in connection with shopping, text entry, sign language interpretation, and vision-based discovery. Still other improvements are architectural in nature, e.g., relating to evidence-based state machines, and blackboard systems. Yet other technologies concern use of linked data in portable devices—some of which exploit GPU capabilities. Still other technologies concern computational photography. A great variety of other features and arrangements are also detailed.