摘要:
An image selected to be printed is rendered for display, prior to printing, based on the relative position and orientation of a display in relation to a user's head, where the displayed rendered image is a representation of what the rendered image will look like when printed. The user's eye movement relative to the rendered image is tracked, with at least one area of interest in the image to the viewer being determined based on the viewer's eye movement, an imaging property of the at least one area of interest is adjusted, the image to be printed is rendered based on adjusting the imaging property, and the image is printed.
摘要:
A hybrid image of a scene is formed by obtaining a visible light image and a quantum entanglement image of the scene. Light intensity channel information is extracted from the visible light image of the scene, and a ghost image of the scene is constructed by cross-correlating the extracted light intensity channel information with the quantum entanglement image. The visible light image is thereafter fused with the ghost image so as to form a hybrid image of the scene.
摘要:
Systems and methods for simulating an image exposure capture a first set of images of a scene; and generate a flash preview image based on the first set of images, an estimated scene spectral reflectance, an estimated spectral power distribution of the scene, and one or more flash device settings, wherein the flash preview image approximates a brightness and a color appearance of a final image of the scene captured while the scene is illuminated by a flash device according to the one or more flash device settings.
摘要:
Image capture using an image capture apparatus that includes an imaging assembly. Geographic location of the image capture apparatus is received from a location sensor that obtains geographic location of the image capture apparatus. A capture mask is constructed by calculations which use the geographic location. The constructed capture mask is applied to the imaging assembly, the imaging assembly having a tunable spectral response and being tunable in accordance with the capture mask.
摘要:
Systems and methods for evaluating images segment a computational image into sub-images based on spectral information in the computational image, generate respective morphological signatures for the sub-images, generate respective spectral signatures for the sub-images, and generate a resulting image signature based on the morphological signatures and the spectral signatures.
摘要:
Systems and methods for generating an image determine scene information based on a first image of a scene, the first image including an image of a subject at a first position in the scene, and the first image information including a first field of view of the first image and a first capture location where the first image was captured, acquire a second image of the scene from a repository storing a plurality of images based on the scene information, the second image having a second field of view similar to the first field of view and a second capture location similar to the first capture location, adjust light parameters of the image of the subject based on the light parameters of the second image, and generate a combined image based on the second image and the image of the subject, the combined image including at least part of the second image, and the adjusted image of the subject at a position in the scene similar to the first position in the scene.
摘要:
An image capture device includes an imaging assembly having a spectral sensitivity tunable in accordance with a spectral capture mask. A pre-capture captures a sample image of a scene using the imaging assembly tuned by a first spectral capture mask. A second spectral capture mask is constructed by calculations which use image data of the sample image. The second spectral capture mask is constructed to tune the spectral sensitivity of the imaging assembly so as to adjust respective capture parameters for different objects in the scene. The second spectral capture mask is applied to the imaging assembly. An image of the scene is captured with the second spectral capture mask applied to the imaging assembly.
摘要:
Image capture using an image capture device which includes an imaging assembly having a spectral sensitivity tunable in accordance with a spectral capture mask and light-field optics for projecting a light-field of a scene onto the imaging assembly. A first spectral capture mask is applied to the imaging assembly and preview image data of a scene is captured under the first capture mask. A designation of a region of interest, and a designation of a capture preference in the region of interest are received. A second spectral capture mask is calculated by calculations which use the preview image data and the capture preference for the region of interest. The second spectral capture mask is applied to the imaging assembly, and light-field image data of the scene is captured under the second spectral capture mask.
摘要:
A method for adaptive spectral image capture that may be performed via an image capture device is disclosed. A default capture parameter is applied to an imaging assembly and a sample image of a scene is captured by an image capture device. The sample image is analyzed to identify transition zones between multiple different regions. An initial guess as to which spectral regions a filter mode might work best is obtained based on dominant transition region spectrum and a first iterated step in which numerical values for the filter mode are calculated. A second iterated step in which each such filter mode is evaluated for effectiveness against other filter modes. The regions in which a specific filter mode works best becomes associated with the filer mode and these regions become the guess for the next iteration.
摘要:
Systems and methods for evaluating images segment a computational image into sub-images based on spectral information in the computational image, generate respective morphological signatures for the sub-images, generate respective spectral signatures for the sub-images, and generate a resulting image signature based on the morphological signatures and the spectral signatures.