摘要:
Methods for quantifying the oil and water fractions of a fluid stream. A first method broadly includes making optical density (OD) measurements of the fluid stream by detecting photons of a first predetermined energy where the oil and water absorption characteristics are substantially identical (e.g., 1710 nm wavelength), and determining the oil and water fractions f.sub.o and f.sub.w according to OD.perspectiveto.f.sub.w .alpha..sub.w l+f.sub.o .alpha..sub.o l where .alpha..sub.w and .alpha..sub.o are related to the absorption coefficients of the oil and water at the predetermined energy, l is the path width of the fluid stream, and f.sub.w +f.sub.o =1. A second method which eliminates scattering effects utilizes the photons at the first predetermined energy and further utilizes photons of a second predetermined energy which is sufficiently close to the first predetermined energy such that the oil fraction is a linear function of the OD over the energy range. The oil and water fractions are then determined from the difference in optical density values (.DELTA.OD) according to .DELTA.OD=f.sub.o [(OD.sub.o,a -OD.sub.o,b)- (OD.sub.w,a -OD.sub.w,b)]+(OD.sub.w,a -OD.sub.w,b), where OD.sub.o,a, OD.sub.o,b, OD.sub.w,a, and OD.sub.w,b are the optical densities per unit length of pure oil (o) and pure water (w) at the first (a) and second (b) wavelengths.
摘要:
Fluid property modeling that employs a model that characterizes asphaltene concentration gradients is integrated into a reservoir modeling and simulation framework to allow for reservoir compartmentalization (the presence or absence of flow barrier in the reservoir) to be assessed more quickly and easily. Additionally, automated integration of the fluid property modeling into the reservoir modeling and simulation framework allows the compositional gradients produced by the fluid property modeler (particularly asphaltene concentration gradients) to be combined with other data, such as geologic data and other petrophysical data, which allows for more accurate assessment of reservoir compartmentalization.
摘要:
Methods and related systems are described for measuring acoustic signals in a borehole during a fracturing operation. The system includes a downhole toolstring designed and adapted for deployment in a borehole formed within a subterranean rock formation. A downhole rock fracturing tool opens and propagates a fracture in the subterranean rock formation. Dipole and/or quadrupole acoustic sources transmit acoustic energy into the subterranean rock formation. A receiver array measures acoustic energy traveling through the subterranean rock formation before, during and after the fracture induction. Geophones mounted on extendable arms can be used to measure shear wave acoustic energy travelling in the rock formation. The toolstring can be constructed such that the sources and receivers straddle the fracture zone during the fracturing. Alternatively, the sources or the receivers can co-located axially with the fracture zone, or the toolstring can be repositioned following fracturing such that the fracture zone is between the acoustic sources and receivers.
摘要:
A methodology for reservoir understanding employs analysis of fluid property gradients to investigate and distinguish between non-compartmentalization of the reservoir, compartmentalization of the reservoir, and lack of thermodynamic equilibrium in the reservoir.
摘要:
A method for determining reservoir architecture using modeling of a non-equilibrium distribution of at least one analyte in reservoir fluids. The analyte(s) of the analysis preferably has (have) significant compositional variation in the reservoir. For example, the analyte can be a later charging single gas component (such as methane, carbon dioxide, or hydrogen sulfide) in a multi-component fluid system. In this case, the model can assume that the components of the early charge are in a stationary state or in equilibrium, whereas the later charge is in a state of non-equilibrium. The non-equilibrium distribution of the analyte(s) derived from the model is compared to the distribution of the analyte(s) derived from downhole or laboratory fluid analysis of reservoir fluid, and the architecture of the reservoir is determined based upon such comparison.
摘要:
The chemical composition of petroleum samples is measured using orbitrap mass spectrometry with electrospray ionization (ESI). The orbitrap measurement is used in a screening to determine if one or more higher resolution (but more expensive) compositional analyses are justified.
摘要:
A methodology for reservoir understanding that performs investigation of asphaltene instability as a function of location in a reservoir of interest. In the preferred embodiment, results derived as part of the investigation of asphaltene instability are used as a workflow decision point for selectively performing additional analysis of reservoir fluids. The additional analysis of reservoir fluids can verify the presence of asphaltene flocculation onset conditions and/or determine the presence and location of phase-separated bitumen in the reservoir of interest.
摘要:
Integrated formation modeling systems and methods are described. An example method of performing seismic analysis of a subterranean formation includes obtaining seismic data of the formation, obtaining fluid from the formation and analyzing at least some of the fluid to determine a fluid parameter. The example method additionally includes generating a model of the formation based at least on the seismic data and modifying the model based on the fluid parameter.
摘要:
One or more computer-readable media include computer-executable instructions to instruct a computing system to receive input as to physical characteristics of a resource recovery system and a resource reservoir; simulate fluid thermodynamics of the system and the reservoir; and output information as to phase composition, for example, in at least one dense phase affected by the resource recovery system. Various other apparatuses, systems, methods, etc., are also disclosed.
摘要:
An example method for determining a partial density of a compound in a downhole fluid may comprise exposing the downhole fluid to an electromagnetic radiation, and measuring a spectrum of radiation absorption by the downhole fluid. An absorption peak of the compound may be identified in the measured spectrum. A first parameter indicative of radiation absorption by the downhole fluid may be determined in the identified absorption peak. Second and third parameters indicative of radiation absorptions by the downhole fluid may be determined essentially out of the identified absorption peak. A weighted combination of the second and third parameters may be computed, and the partial density of the compound may be determined from a difference between the weighted combination and the first parameter.