Abstract:
The present disclosure is directed to a gas turbine engine defining a longitudinal direction, a radial direction, and a circumferential direction, and an upstream end and a downstream end along the longitudinal direction. The gas turbine engine includes a turbine section, a gearbox proximate to the turbine section, and a driveshaft. The turbine section includes a first rotating component interdigitated with a second rotating component along the longitudinal direction. The first rotating component includes an outer shroud defining a plurality of outer shroud airfoils extended inward of the outer shroud along the radial direction and one or more connecting airfoils coupling the outer shroud to a radially extended rotor. The second rotating component includes an inner shroud defining a plurality of inner shroud airfoils extended outward of the inner shroud along the radial direction. The second rotating component is coupled to an input shaft connected to an input gear of the gearbox. The driveshaft is extended in the longitudinal direction and is connected to an output gear of the gearbox. The first rotating component is coupled to the driveshaft.
Abstract:
A gas turbine engine includes a fan and a core in flow communication with the fan. The core includes an aftmost turbine, and the aftmost turbine includes an aftmost stage of rotor blades. The gas turbine engine also includes a nacelle assembly having a translating and rotating thrust reverser system and enclosing the fan and at least a portion of the core. The nacelle assembly defines a nacelle assembly length between a forward lip and an aft edge. Additionally, the gas turbine engine defines an engine length between the forward lip of the nacelle assembly and the aftmost stage of rotor blades of the aftmost turbine. A ratio of the turbine length to the nacelle assembly length is greater than about 0.5 and less than about 1.
Abstract:
A thrust reverser system for incorporation into a nacelle assembly of a gas turbine engine includes a frame member and a forward ring movable along an axial centerline relative to the frame member. The forward ring is movable between a first position and the second position. The thrust reverser system additionally includes a cascade segment slidably attached to the frame member and rotatably attached to the forward ring. When the forward ring is in the first position the cascade segment is in a radially outer position, and when the forward ring is in the second position, the cascade segment is in a radially inner position for changing a direction of a flow of air to generate reverse thrust.
Abstract:
A thrust reverser system and operation suitable for high-bypass turbofan engines. The thrust reverser system includes a cascade system adapted to be translated with a translating cowl in an aft direction of an engine to expose a circumferential opening. The cascade system is deployed from a stowed position as the translating cowl and the cascade system are translated in the aft direction. During deployment of the cascade system, a fore end thereof translates in the aft direction and an aft end thereof initially translates in the aft direction and then subsequently rotates about the fore end so that further translation of the cascade segment in the aft direction causes the cascade segment to move to a deployed position and divert bypass air within a bypass duct of the engine through the circumferential opening.
Abstract:
A thrust reverser system and operation suitable for high-bypass turbofan engines. The thrust reverser system includes a cascade system adapted to be translated with a translating cowl in an aft direction of an engine to expose a circumferential opening. The cascade system is deployed from a stowed position as the translating cowl and the cascade system are translated in the aft direction. During deployment of the cascade system, a fore end thereof translates in the aft direction and an aft end thereof initially translates in the aft direction and then subsequently rotates about the fore end so that further translation of the cascade segment in the aft direction causes the cascade segment to move to a deployed position and divert bypass air within a bypass duct of the engine through the circumferential opening.