Abstract:
A system for controlling a remote device includes a first trainable transceiver, a second trainable transceiver, and a cloud computing system configured to be in communication with the first trainable transceiver and the second trainable transceiver. The cloud computing system stores a code roll, and the cloud computing system transmits a current value of the code roll to the first trainable transceiver or the second trainable transceiver upon receiving a request transmission from the first trainable transceiver or the second trainable transceiver respectively.
Abstract:
A system for coupling to a vehicle and for causing actuation of a remote device via a control signal transmission includes a transmitter for causing the control signal transmission to the remote device. The system further includes a circuit configured to cause a back-up display to indicate status of the remote device in response to a status determination.
Abstract:
A multi-zone monitoring system is disclosed. The system includes a plurality of sensor modules configured to monitor conditions in a plurality of detection zones. The sensor modules include a combination of detection devices configured to detect different conditions based on a designated zone of each sensor module. The system further includes a reporting device in communication with each of the sensor modules. The reporting device is configured to report the status of each of the detection zones based on indications communicated via the detection devices in the corresponding detection zone.
Abstract:
A system is provided for allowing temporary access to a desired area. The temporary access may be for the purposes of making a delivery. The system comprises a trainable transceiver configured to transmit an activation signal to a remote device; a mobile communications device in selective communication with the trainable transceiver; and an accessory selectively securable to mobile communications device and capable of transmitting information to trainable transceiver.
Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured based on training information to communicate with the remote device, a communications device configured to communicate with a mobile communications device, and a control circuit coupled to the transceiver circuit, and coupled to the communications device. The control circuit is configured to transmit diagnostic information related to the trainable transceiver to a mobile communications device via the communications device.
Abstract:
A remote control system of a vehicle is configured to control a remote device via a first electronic device. The first electronic device is configured to control the transmission of a semi-generic user voice command and the voice command is updated based on one or more spoken words generating an updated voice command. The remote control system comprises a second electronic device in communication with the first electronic device. A controller is configured to prompt the first electronic device to cause the updated voice command to be accessed and transmitted to a remote device controller located remotely from the vehicle in response to the input from a user-input mechanism of the second electronic device. The remote device controller processes the updated voice command, generates a control command based on the updated voice command, and executes the control command.
Abstract:
A system for installation in a vehicle and for controlling a remote device includes a trainable transceiver and a remote button module. The trainable transceiver base station configured to be mounted in the vehicle at a first location and the remote button module separated from the base station and configured to be mounted in the vehicle at a second location. The remote button module is configured to wirelessly transmit a command signal to the base station in response to receiving a user input at a user input device, and the base station responds to receiving the command signal by transmitting an activation signal to the remote device, wherein the activation signal is formatted to control the remote device.
Abstract:
A vehicle-based remote control system and method are provided herein. A first in-vehicle device and a second in-vehicle device are provided. The second in-vehicle device includes a user-input mechanism having at least one actuatable member, and a controller programmed to respond to input from the user-input mechanism. Upon actuation of the at least one actuatable member, the controller prompts the first in-vehicle device to transmit a pre-recorded user voice command assigned to the at least one actuatable member. The pre-recorded user voice command is transmitted to a server. The server processes the pre-recorded user voice command and generates a command for executing an action specified by the pre-recorded user voice command. The command is executed by one or more smart devices located remotely from a vehicle.
Abstract:
A trainable transmitter comprises a user interface and a memory. The memory comprises control data configured to control a plurality of remote control devices. The transmitter further comprises a transmitter circuit configured to generate and transmit signals in response to an input received by the user interface and comprises a control circuit. The control circuit is configured to retrieve the control data from the memory in response to actuation of the user interface. The control circuit is further configured to control the transmitter circuit to transmit a plurality of control messages comprising coded transmissions for a plurality of remote control devices. The coded transmissions for the remote control devices are interleaved over a shared temporal period.
Abstract:
A communication system for a vehicle that includes a transceiver having a transmit antenna disposed adjacent to an exterior component of the vehicle, the transceiver being configured to transmit at least one signal to a receiver external to the vehicle. The communication system also includes a controller having a processor and a memory storage device, the memory storage device being configured to store the at least one signal and to output the at least one signal to the transceiver. The communication system also includes a remote receive antenna disposed within an interior of the vehicle and communicatively coupled to the memory storage device, wherein the remote receive antenna is configured to receive the at least one signal from a training transmitter and to output the at least one signal to the memory storage device.