Abstract:
A pair of cameras having an overlapping field of view is aligned based on images captured by image sensors of the pair of cameras. A pixel shift is identified between the images. Based on the identified pixel shift, a calibration is applied to one or both of the pair of cameras. To determine the pixel shift, the camera applies correlation methods including edge matching. Calibrating the pair of cameras may include adjusting a read window on an image sensor. The pixel shift can also be used to determine a time lag, which can be used to synchronize subsequent image captures.
Abstract:
An image capture accelerator performs accelerated processing of image data. In one embodiment, the image capture accelerator includes accelerator circuitry including a pre-processing engine and a compression engine. The pre-processing engine is configured to perform accelerated processing on received image data, and the compression engine is configured to compress processed image data received from the pre-processing engine. In one embodiment, the image capture accelerator further includes a demultiplexer configured to receive image data captured by an image sensor array implemented within, for example, an image sensor chip. The demultiplexer may output the received image data to an image signal processor when the image data is captured by the image sensor array in a standard capture mode, and may output the received image data to the accelerator circuitry when the image data is captured by the image sensor array in an accelerated capture mode.
Abstract:
An image capture accelerator performs accelerated processing of image data. In one embodiment, the image capture accelerator includes accelerator circuitry including a pre-processing engine and a compression engine. The pre-processing engine is configured to perform accelerated processing on received image data, and the compression engine is configured to compress processed image data received from the pre-processing engine. In one embodiment, the image capture accelerator further includes a demultiplexer configured to receive image data captured by an image sensor array implemented within, for example, an image sensor chip. The demultiplexer may output the received image data to an image signal processor when the image data is captured by the image sensor array in a standard capture mode, and may output the received image data to the accelerator circuitry when the image data is captured by the image sensor array in an accelerated capture mode.
Abstract:
An image capture accelerator performs accelerated processing of image data. In one embodiment, the image capture accelerator includes accelerator circuitry including a pre-processing engine and a compression engine. The pre-processing engine is configured to perform accelerated processing on received image data, and the compression engine is configured to compress processed image data received from the pre-processing engine. In one embodiment, the image capture accelerator further includes a demultiplexer configured to receive image data captured by an image sensor array implemented within, for example, an image sensor chip. The demultiplexer may output the received image data to an image signal processor when the image data is captured by the image sensor array in a standard capture mode, and may output the received image data to the accelerator circuitry when the image data is captured by the image sensor array in an accelerated capture mode.
Abstract:
A camera system captures an image in a source aspect ratio and applies a transformation to the input image to scale and warp the image to generate an output image having a target aspect ratio different than the source aspect ratio. The output image has the same field of view as the input image, maintains image resolution, and limits distortion to levels that do not substantially affect the viewing experience. In one embodiment, the output image is non-linearly warped relative to the input image such that a distortion in the output image relative to the input image is greater in a corner region of the output image than a center region of the output image.
Abstract:
The conversion of RAW data captured by a camera can have artifacts in smoothness of various hues for varying chroma. To optimize smoothness and color accuracy, transform coefficients defining conversion of a standard color model to a target color model are determined. The RAW data is converted to data in a standard color model and the data in the standard color model is converted to data in the target color model using the transform coefficients. The process is repeated for various lightness levels and combined into a look up table to efficiently convert RAW data to data in the target color model for various lightness levels.
Abstract:
A camera system captures an image in a source aspect ratio and applies a transformation to the input image to scale and warp the input image to generate an output image having a target aspect ratio different than the source aspect ratio. The output image has the same field of view as the input image, maintains image resolution, and limits distortion to levels that do not substantially affect the viewing experience. In one embodiment, the output image is non-linearly warped relative to the input image such that a distortion in the output image relative to the input image is greater in a corner region of the output image than a center region of the output image.
Abstract:
A method includes obtaining visual content comprising spatial portions; determining respective spatial qualities of the spatial portions, wherein the respective spatial qualities are based on locations of the spatial portions within the visual content; and encoding the spatial portions of the visual content based on the respective spatial qualities. An apparatus includes a camera, a display, and a processor. The processor is configured to identify, using facial recognition, a face of a user of the apparatus; identify a distance of the face of the user to the display; and render visual content on the display using a quality that is based on the distance.
Abstract:
Methods and apparatus for encoding and decoding image data based on one or more parameters. In one embodiment, various spatial portions or regions of image data (e.g., a still or moving image) are weighted according to the perceived or measured quality. Processing for these weighted regions can be selectively altered or adjusted so as to optimize one or more operational parameters including for example processing and/or memory requirements, or speed.
Abstract:
A camera system captures an image in a source aspect ratio and applies a transformation to the input image to scale and warp the input image to generate an output image having a target aspect ratio different than the source aspect ratio. The output image has the same field of view as the input image, maintains image resolution, and limits distortion to levels that do not substantially affect the viewing experience. In one embodiment, the output image is non-linearly warped relative to the input image such that a distortion in the output image relative to the input image is greater in a corner region of the output image than a center region of the output image.