摘要:
Superabrasive compacts, methods of fabricating such compacts, and drilling tools that may utilize such compacts are disclosed. In one aspect of the present invention, a superabrasive compact includes a substrate and a superabrasive table attached to the substrate. At least one constituent of the superabrasive table exhibits a substantially monotonic distribution of size, concentration, or both in a selected direction of the superabrasive table. In another aspect of the present invention, a method of fabricating a superabrasive article is disclosed. A plurality of particles may be provided that exhibit a substantially monotonic distribution of particle size, concentration, or both in a selected direction. The particles may be subjected to a high-temperature, high-pressure process to consolidate and form a self-supporting body.
摘要:
Embodiments of the present invention relate to superabrasive materials, superabrasive compacts employing such superabrasive materials, and methods of fabricating such superabrasive materials and compacts. In one embodiment, a superabrasive material includes a matrix comprising a plurality of coarse-sized superabrasive grains, with the coarse-sized superabrasive grains exhibiting a coarse-sized average grain size. The superabrasive material further includes a plurality of superabrasive regions dispersed within the matrix, with each superabrasive region including a plurality of fine-sized superabrasive grains exhibiting a fine-sized average grain size less than the coarse-sized average grain size. In another embodiment, the superabrasive materials may be employed in a superabrasive compact. The superabrasive compact comprises a substrate including a superabrasive table comprising any of the disclosed superabrasive materials. Further embodiments are directed to applications utilizing the disclosed superabrasive articles in applications, such as rotary drill bits.
摘要:
According to various aspects of the present invention, a superabrasive element includes a plurality of superabrasive grains (e.g., as diamond grains and/or cubic boron nitride grains). The superabrasive element further includes a binder constituent that bonds at least a portion of the superabrasive grains together. The binder constituent includes predominantly one or more inorganic-compound phases, such as boron or silicon compounds. Applications utilizing such superabrasive elements and methods of fabricating such superabrasive elements are also disclosed.
摘要:
Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to a HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a method includes subjecting a mixture to heat and pressure sufficient to form a PCD material. The mixture comprises a plurality of diamond particles exhibiting a diamond particle size distribution characterized, in part, by a parameter θ that is less than about 1.0, where θ = x 6 · σ , x is the average particle size of the diamond particle size distribution, and σ is the standard deviation of the diamond particle size distribution. In an embodiment, the diamond particle size distribution can be generally modeled by the following equation: CPFT 100 = D n - D S n D L n - D S n , wherein CPFT is the cumulative percent finer than, D is diamond grain size, DL is the largest-sized diamond grain, DS is the smallest-sized diamond grain, and n is a distribution modulus.
摘要翻译:实施方案涉及通过使表现出宽金刚石粒度分布的混合物经历HPHT方法,所形成的PCD材料以及包括包含这种PCD材料的多晶金刚石台的PDC来制造PCD材料的方法。 在一个实施方案中,一种方法包括使混合物经受足以形成PCD材料的热和压力。 该混合物包括多个金刚石颗粒,其具有金刚石颗粒尺寸分布,其部分表征为参数θ小于约1.0,其中θ= x 6。 sigma,x是金刚石粒度分布的平均粒度,σ是金刚石粒度分布的标准偏差。 在一个实施方案中,金刚石粒度分布通常可以通过以下等式建模:CPFT 100 = D n -DS n DL n-DS n,其中CPFT是比D更精细的累积百分比,D是金刚石晶粒尺寸,DL是 最大尺寸的金刚石颗粒,DS是最小尺寸的金刚石颗粒,n是分布模量。
摘要:
A cutting element assembly for use on a rotary drill bit for forming a borehole in a subterranean formation. A cutting element includes a substrate having a base member affixed to a back surface of the substrate is disclosed, wherein the base member includes a recess configured to secure the base member to a rotary drill bit. An inner member may be positioned within the recess of the base member. Also, a structural element may be coupled to the inner member or to the base member. A rotary drill bit may include a cutting element assembly. In addition, a method of securing a cutting element to a rotary drill bit may include providing a base member affixed to a cutting element and positioning the base member within a recess of the rotary drill bit.