摘要:
A fixing device includes a fixing rotator rotatable in a predetermined direction of rotation and a pressure rotator pressed against an outer circumferential surface of the fixing rotator. A heater is disposed opposite an inner circumferential surface of the fixing rotator to heat the fixing rotator. A reflector is disposed opposite the heater to reflect light radiated from the heater onto the inner circumferential surface of the fixing rotator. A support mounts the reflector. A heater holder is mounted on the support to hold the heater.
摘要:
A fixing device includes: a fixing member; an opposing member that provides a fixing nip with the fixing member; a heating unit that heats the fixing member; a heating area changing member that moves to change a heating area of the fixing member heated by the heating unit; and a position detection sensor that detects a position of the heating area changing member. The fixing device controls a stop position of the heating area changing member based on detection by the position detection sensor. The single position detection sensor detects the position of the heating area changing member both when the heating area changing member is moving from a preset reference position to an arbitrary position and when the heating area changing member is moving back from an arbitrary position to the reference position.
摘要:
A fixing device includes an endless fixing belt, fixing-belt holding members which hold the fixing belt at opposite ends, a pressure member to be brought into contact with the fixing belt, a nip forming member arranged inside the fixing belt to form a nip area by contacting the pressure member with the fixing belt, a nip supporting member, side plates where the fixing-belt holding members and the nip supporting member are fixed, and a pressing mechanism which presses the pressure member against the nip forming member. The nip forming member includes at least three layers including a heat absorbing layer contacting the nip supporting member. With no load applied, the nip supporting member assumes a shape protruding at longitudinal center toward the pressure member and is in contact with the nip forming member while having the shape protruding at the center portion.
摘要:
A fixing device includes an endless belt or a fixing belt; a pressure member to contact an outer circumferential surface of the fixing belt; a nip forming member disposed at an interior side of the fixing belt and contacting the pressure member via the fixing belt; a heat source disposed at an interior side of the fixing belt to heat the fixing belt with radiant heat, a plurality of shielding members disposed between the heat source and the fixing belt and movable between a shielding position where the shielding member shields a non-sheet passing area on the fixing belt from the radiant heat from the heat source and a retracted position; and a controller to move the plurality of shielding members between the shielding position and the retracted position at a predetermined time.
摘要:
There is provided a method for manufacturing a seamless steel pipe for line pipe, capable of improving the toughness of the seamless steel pipe for line pipe. A round billet having a chemical composition, by mass percent, of C: 0.02 to 0.15%, Si: at most 0.5%, and Mn: 0.5 to 2.5%, the balance being Fe and impurities, is heated. The heated round billet is piercing-rolled to produce a hollow shell. The hollow shell is elongated and rolled and sized to produce a seamless steel pipe. The seamless steel pipe is water cooled, and the water cooling is stopped when the temperature of the seamless steel pipe reaches at most 450° C. The water-cooled seamless steel pipe is quenched, and the quenched seamless steel pipe is tempered.
摘要:
A fixing device includes a first heat generator and a second heat generator that heat a fixing rotator. A support is disposed inside the fixing rotator. A reflector is mounted on the support and interposed between the support and each of the first heat generator and the second heat generator to reflect light radiated from the first heat generator and the second heat generator toward the fixing rotator. The reflector includes a body mounted on the support and a shield portion projecting from the body toward the first heat generator and the second heat generator to shield the fixing rotator from the first heat generator and the second heat generator. The shield portion includes a wing disposed opposite a non-conveyance span of the fixing rotator in the axial direction thereof where a recording medium is not conveyed over the fixing rotator.
摘要:
A fixing device includes a fixing rotator rotatable in a predetermined direction of rotation, a heater disposed opposite the fixing rotator to heat the fixing rotator, and an opposed rotator contacting an outer circumferential surface of the fixing rotator. A heat shield interposed between the heater and the fixing rotator shields the fixing rotator from the heater. A support supports the heat shield. The heat shield includes a first section supported by the support and having a decreased thermal conductivity and a second section abutting the first section in an axial direction of the heat shield and having an increased thermal conductivity greater than the decreased thermal conductivity of the first section.
摘要:
A fixing device includes a thermal conductor disposed inside a flexible endless fixing belt formed into a loop and configured to conduct heat from a heater to the fixing belt. The thermal conductor includes a center heating portion heated by the heater and disposed at a center of the thermal conductor in a longitudinal direction thereof orthogonal to a conveyance direction of a recording medium conveyed to the fixing belt and lateral end non-heating portions disposed at lateral ends of the thermal conductor in the longitudinal direction thereof and contiguous to the center heating portion. The center heating portion having a first diameter conducts heat from the heater to the fixing belt. The lateral end non-heating portions having a second diameter smaller than the first diameter of the center heating portion minimize conduction of heat from the heater to the fixing belt.
摘要:
A steel pipe with excellent expandability, comprising, by mass %, C: 0.1 to 0.45%, Si: 0.3 to 3.5%, Mn: 0.5 to 5%, P: less than or equal to 0.03%, S: less than or equal to 0.01%, soluble Al: 0.01 to 0.8% (more than or equal to 0.1% in case Si content is less than 1.5%), N: less than or equal to 0.05%, O: less than or equal to 0.01%, and balance being Fe and impurities, having a mixed microstructure comprising ferrite and one or more selected from fine pearlite, bainite and martensite, and having a tensile strength of more than or equal to 600 MPa and a uniform elongation satisfying following formula (1).This steel pipe, having the above described chemical composition, can be obtained, for example, by being heated at temperatures from 700 to 790° C., then being forced-cooled down to a temperature of lower than or equal to 100° C. with the cooling rate of greater than or equal to 100° C./min at the temperature from 700 to 500° C. u-el≧28−0.0075TS (1), wherein u-el means uniform elongation (%), and TS means tensile strength (MPa).
摘要:
A seamless steel pipe for line pipe having high strength and high toughness contains, by mass percent, C: 0.02 to 0.10%, Si: at most 0.5%, Mn: 0.5 to 2.0%, Al: 0.01 to 0.1%, P: at most 0.03%, S: at most 0.005%, Ca: at most 0.005%, and N: at most 0.007%, and further contains at least one selected from a group consisting of Ti: at most 0.008%, V: less than 0.06%, and Nb: at most 0.05%, the balance being Fe and impurities. A carbon equivalent Ceq defined by Formula (1) is at least 0.38, a content of Ti, V and Nb satisfies Formula (2), and the size of carbo-nitride containing at least one of Ti, V, Nb and Al is at most 200 nm, Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 (1) Ti+V+Nb
摘要翻译:具有高强度,高韧性的线管用无缝钢管以质量%计含有C:0.02〜0.10%,Si:0.5%以下,Mn:0.5〜2.0%,Al:0.01〜0.1%,P:at 最多0.03%,S:0.005%以下,Ca:0.005%以下,N:0.007%以下,进一步含有选自Ti:0.008%以下,V:0.06以下的至少1种 %,Nb:0.05%以下,余量为Fe和杂质。 由式(1)定义的碳当量Ceq至少为0.38,Ti,V和Nb的含量满足式(2),并且含有Ti,V,Nb和Al中的至少一种的碳氮化物的尺寸在 最大200nm,Ceq = C + Mn / 6 +(Cr + Mo + V)/ 5 +(Ni + Cu)/ 15(1)Ti + V + Nb <0.06(2)。