Abstract:
The display device is arranged with a pair of reflection layers arranged facing each other and which function as an anode and cathode of a light emitting layer, a light emitting layer sandwiched between the pair of reflection layers and arranged in a pixel of a display region, a transparent conductive layer contacting the light emitting layer and arranged so as to overlap an aperture part seen from a planar view, wherein the aperture part is arranged in one of the pair of reflection layers and is arranged with a color filter including a pigment layer therein.
Abstract:
A display device related to one embodiment of the present invention includes a first substrate arranged with a plurality of pixels in the shape of a matrix, an insulation film arranged above the first substrate, a first electrode arranged above the insulation film, a second electrode arranged on an upper layer of the first electrode, and an organic EL layer arranged between the first electrode and the second electrode, wherein the insulation film includes a plurality of concave parts arranged corresponding to each of the plurality of pixels on the side of the first electrode, the first electrode, the organic EL layer and the second electrode are stacked in order above the insulation film and the concave part, and the an insulation layer is covering an end part of the first electrode arranged above the concave part is arranged on an interface part sectioning each of the plurality of pixels.
Abstract:
In an organic EL display device configured in which an acrylic resin layer is disposed under a barrier layer that protects an OLED for flattening the barrier layer, floating the barrier layer caused by penetration of moisture into the acrylic resin can be prevented. A side surface of a bank formed in a boundary of pixels is formed into a cliff part having an inclination angle of 90° or larger in most portions of a circumstance of each pixel part, and formed into a gently sloped part having the inclination angle smaller than 90° in a part of the circumference. The electrode parts disposed within the respective pixels are connected to each other through an electrode part disposed on an upper surface of the bank, and electrode parts disposed on the gently sloped parts to form an OLED common electrode.
Abstract:
An organic electroluminescent display device includes a substrate, plural pixel electrodes that are disposed on the substrate, an insulating layer that is disposed in areas between the pixel electrodes adjacent to each other, and extends integrally to upper and lower portions of ends of the pixel electrodes adjacent to each other, an organic electroluminescent film that is disposed on the substrate with the inclusion of a common layer that continuously covers the plural pixel electrodes and the insulating layer; and a common electrode that is disposed on the organic electroluminescent film.
Abstract:
An organic EL display device includes a first substrate, a plurality of organic EL devices arranged on the first substrate, a second substrate arranged above the first substrate, and a filling layer arranged between the first substrate and the second substrate, and displays an image on the second-substrate side. The organic EL display device is characterized in that: the organic EL devices each have a light-emission layer, a reflection electrode formed below the light-emission layer and reflecting light from the light-emission layer upwards, and an upper electrode formed above the light-emission layer and having a light transmission property and reflectivity; a structure for resonating the light emitted by the light-emission layer is formed between the reflection electrode and the upper electrode; and the filling layer includes fine particles for diffusing light exiting from the upper electrode added therein.
Abstract:
There is provided an EL display device of a color filter system which obtains sufficient brightness and contrast while making it difficult to generate a color mixture even if pixels become fine. An EL display device 100 according to the present invention includes a first substrate 1, a circuit layer 2 formed on the first substrate 1, a color selection reflection layer 11 formed in an upper layer of the circuit layer 2, lower electrodes 5 formed in an upper layer of the color selection reflection layer 11, a white light emission EL layer 7 formed in an upper layer of the lower electrodes 5, an upper electrode 8 formed in an upper layer of the EL layer 7, and a sealing layer 9 formed in an upper layer of the upper electrode 8.
Abstract:
An organic electro-luminescence display device includes a first substrate, plural pedestals which are provided in a convex shape on the first substrate and have inclined side surfaces, plural first electrodes respectively provided on the respective side surfaces of the pedestals, an organic electro-luminescence film which is provided above the plural pedestals and includes a light-emitting layer laminated on the plural first electrodes, and a second electrode which is provided above the plural pedestals and is laminated on the organic electro-luminescence film. Light generated in the light-emitting layer is transmitted between a first reflection surface and a second reflection surface. The second electrode includes light transmission parts, through which the light passes, above upper end parts of the pedestals. A surface of the second electrode facing the organic electro-luminescence film is the second reflection surface except for the light transmission parts.
Abstract:
An organic EL display device includes an inorganic insulating film including a contact part as an opening where a contact electrode made of a conductive film is exposed, a TFT circuit layer provided on the inorganic insulating film and including a circuit including a thin film transistor, an organic EL element layer provided on the TFT circuit layer and including an organic EL element whose light emission is controlled by the circuit, and a sealing layer covering the organic EL element layer and made of an inorganic insulating material.
Abstract:
An organic display device includes a pixel driving circuit having a thin film transistor connected to a current supply line and a capacitor. A first insulation layer, with a first electrode thereon, covers a source electrode of the transistor. The first electrode is connected to the transistor through a contact hole in the insulation layer. A second insulation layer including an aperture is formed on the first insulation layer and electrode layers. An organic light emitting layer, with a second electrode thereon is formed in the aperture and connected to the first electrode. The second insulation layer includes an inner wall at the aperture, said inner wall having a surface of a convex plane on an edge of the recessed part of the first electrode. The convex plane is located between the organic light emitting layer and the edge of the first electrode, and the second electrode is formed over plurality of pixels.
Abstract:
A display device includes a display panel for displaying a white image; an electrochromic layer stacked on the display panel; a voltage application unit for applying a driving voltage to the electrochromic layer; and a display unit for displaying the white image on the display panel. The electrochromic layer allows a spectrum of light to be transmitted therethrough to be controlled in accordance with the driving voltage applied thereto; and the voltage application unit controls the driving voltage to be applied to the electrochromic layer in synchronization with display of the image on the display panel by the display unit, thus to control the spectrum of the light to be transmitted through the electrochromic layer.