Abstract:
The present invention relates to PDEI inhibitory compounds of Formula I as described herein, processes for their production, their use as pharmaceuticals and pharmaceutical compositions comprising them.
Abstract:
A heat dissipation device is provided in the present disclosure, where the heat dissipation device includes a hollow heat-sink base and a set of fluid tube. The fluid tube is inserted in the heat-sink base, and a cooling medium circulates in the fluid tube. The heat-sink base includes a heat absorption area configured to absorb heat. A cooling fluid, received in the heat-sink base, may be vaporized at the heat absorption area to absorb the heat taken by the heat absorption area, and condensed at a position that is inside the heat-sink base and away from the heat absorption area and on the fluid tube to release the absorbed heat.
Abstract:
The present invention discloses a method, device and system for managing information of an optical node in an optical distribution network, relates to management of information of an optical node in an optical distribution network, is capable of solving the problem of manual entry of information of an optical node being cumbersome, and is not limited by installation locations of the optical node. The method for managing information of an optical node in an optical distribution network includes: obtaining an identity code of an optical node; querying a pre-established optical node information table according to the identity code of the optical node, wherein the optical node information table comprises the identity code of the optical node and the installation location information of the optical node. The present invention is suitable for management of information of an optical node in an optical distribution network.
Abstract:
Embodiments of the present disclosure disclose an optical cable and an optical cable system, where the optical cable includes an SZ-shaped optical cable skeleton and a plurality of optical fiber units. Skeleton slots is recessed in a periphery of the optical cable skeleton, and the plurality of optical fiber units is grouped and respectively disposed in the corresponding skeleton slots, thereby having the advantages of being easy to strip and draw, high reliability, and long lifetime. Moreover, the optical fiber does not need to be connected when being diverged on floors during installation, thereby reducing the fusion splicing/termination connection time, simplifying the optical cable wiring, greatly reducing deployment cost of an Optical Distribution Network (ODN), and speeding up the scale deployment of the FTTX ODN; in addition, interference among the optical fibers is avoided when the optical fibers are drawn, thereby increasing reliability of the optical fibers after installation.
Abstract:
A method for load balancing based on Transparent Interconnection of Lots of Links (TRILL) is provided. Said method comprises: acquiring, by a routing bridge (RB), all current medium access control (MAC) addresses within each virtual local area network (VLAN) on a link where the RB is located. And if said RB is selected as a designated routing bridge (DRB), said RB distributes all the current MAC addresses acquired within each VLAN between said RB and other RBs on the same link according to a preset distribution rule, and notifies said other RBs to be responsible for forwarding of messages having a specified MAC address and VLAN, wherein said MAC addresses are the MAC addresses of the host devices on the link where said RB is located. If said RB is a common RB, said RB receives a notification sent by a DRB and learns that it is responsible for forwarding of messages having a MAC address and VLAN specified in said notification; and upon receiving a message sent by a host device, said RB determines whether said message is a message it is responsible for forwarding according to the VLAN and the MAC address of the host device carried by the message; if yes, said RB forwards said message; and if no, said RB discards said message.
Abstract:
A pluggable mechanism, disposed between a bearing board and a to-be-inserted board, includes: a gear wrench hinged on the bearing board, where the gear wrench comprises a handle and a drive tooth part; and a swing gear, hinged on the bearing board and connected to the to-be-inserted board, where the swing gear comprises a gearing tooth part meshing with the drive tooth part, and the to-be-inserted board moves with the move of the swing gear. A production board including the above pluggable mechanism is also disclosed. A subrack including the above production board is also disclosed. The pluggable mechanism has a simple structure, high reliability, good operability, no occupation of vertical space, and small motion resistance, and is suitable for board plugging requiring great force for inserting and removing.
Abstract:
The present invention relates to (1- or 2- and/or 5 and/or 7-substituted)-(3-oxy)-(4H, 4-imino, 4-thioxo or 4-oxo)-pyrazolo[3,4-d]pyrimidin-6-ones, e.g., a compound of formula II as described below, processes for their production, their use as pharmaceuticals and pharmaceutical compositions comprising them. Of particular interest are novel compounds useful as inhibitors of phosphodiesterase 1 (PDE1), e.g., in the treatment of diseases involving disorders of the dopamine D1 receptor intracellular pathway, such as Parkinson's disease, depression, narcolepsy, damage to cognitive function, e.g., in schizophrenia, or disorders that may be ameliorated through enhanced progesterone-signaling pathway, e.g., female sexual dysfunction.
Abstract:
The present invention relates to optionally substituted (5- or 7-oxy)-3,4-dihydro-(optionally 4-oxo, 4-thioxo or 4-imino)-1H-pyrrolo[3,4-d]pyrimidin-2(3H,6H)-ones, e.g., Compounds of Formula II-A′ or II-B′ as described herein, processes for their production, their use as pharmaceuticals and pharmaceutical compositions comprising them.
Abstract:
An optical switch includes: a semiconductor substrate, including a first rotation part and a first torsion beam disposed at two ends of the first rotation part, where the first torsion beam is configured to drive the first rotation part to rotate; a microreflector, disposed on a surface of the first rotation part of the semiconductor substrate; a first latching structure, disposed on a surface of the first torsion beam, the first latching structure including a form self remolding (FSR) material layer and a thermal field source, where the thermal field source is configured to provide a thermal field for the FSR material layer and the FSR material layer is configured to undergo form remolding under the thermal field, so as to latch the first rotation part and the microreflector in a position after rotation.
Abstract:
Optionally substituted 3-(thio, sulfonyl or sulfonyl)-7,8-dihydro-(1H or 2H)-imidazo[1,2-a]pyrazolo[4,3-e]pyrimidin-4(5H)-one or a substituted 3-(thio, sulfinyl or sulfonyl)-7,8,9-trihydro-(1H or 2H)-pyrimido[1,2-a]pyrazolo[4,3-e]pyrimidin-4(5H)-one compounds or Compounds of Formula (I), processes for their production, their use as pharmaceuticals and pharmaceutical compositions comprising them.