Abstract:
A dressing interface for a negative-pressure treatment system includes a housing. The housing includes an entry surface having first channels. The dressing interface also includes a primary conduit through the housing and terminating on the entry surface, an ancillary conduit through the housing and terminating on the entry surface, and a base coupled to the housing. The base includes an aperture, and a plurality of stand-offs having rounded surfaces. The stand-offs defines second channels configured to facilitate flow of liquid to the first channels through the aperture.
Abstract:
A cover for protecting a tissue site may comprise a shell layer, an adhesive disposed on the shell layer, and a contact layer disposed adjacent to the adhesive. The contact layer may have an open area of about 40 percent to about 50 percent of the total area of the contact layer. A release liner may be disposed adjacent to the contact layer. Perforations through the shell layer and the contact layer can define a sacrificial segment configured to be separated from the shell layer and the contact layer. A handling bar may be coupled to the sacrificial segment.
Abstract:
In one example embodiment, an apparatus may include a panel with integrated fluid channels, wherein the panel and the fluid channel consist only of surfaces that can be manufactured with a straight-pull mold. A port may also be integrated into the panel to facilitate coupling the fluid channel to pneumatic components in an assembly. A seal may be secured to the panel over the fluid channel to form an integrated fluid conductor. The seal is preferably an adhesive label that can also be used for product labeling. Such an apparatus may be used in a control unit of a therapy system, employing several integrated fluid conductors. A method of manufacturing may include molding a panel, wherein the mold forms a channel integral to the panel. The panel and the channel preferably consist of surfaces that can be molded with a straight-pull mold.
Abstract:
Systems for the treatment of pleural effusion are disclosed herein. A first system includes a fluid conductor that provides fluid communication with a pleural space of a patient. The first system also includes a canister and a negative-pressure source in fluid communication with the canister. The negative-pressure source pre-charges the canister to a negative-pressure range and maintains the negative-pressure range within the canister while the canister and the fluid conductor are in fluid communication.
Abstract:
Systems, apparatuses, and methods for instilling fluid to a tissue site in a negative-pressure therapy environment are described. Illustrative embodiments may include a pneumatically-actuated instillation pump that can draw a solution from a solution source during a negative-pressure interval, and instill the solution to a dressing during a venting interval. A pneumatic actuator may be mechanically coupled to a disposable distribution system that can provide a fluid path between the solution source and a distribution component. A bacterial filter may be disposed in the fluid path between the actuator and the distribution component to prevent contamination of the actuator during operation. The distribution system may be separated from the actuator and disposed of after operation, and the actuator may be re-used.
Abstract:
A reduced-pressure system for delivering reduced pressure for medical purposes to a desired site and to receive fluids in one instance includes a reservoir having an interior space operable to contain the fluids. A reduced-pressure delivery conduit is placed in fluid communication with the interior space for delivering the reduced pressure to the desired site. A source conduit and a pressure sensor conduit are placed in fluid communication with the interior space. A pressure sensor is placed in fluid communication with the pressure sensor conduit. A reduced-pressure source is placed in fluid communication with the source conduit. A reduced-pressure control unit is associated with the pressure sensor and the reduced-pressure source and is operable to receive pressure data from the pressure sensor and supply data from the reduced-pressure source and to determine when a reservoir-full/blockage condition exists. Other systems and methods are presented.
Abstract:
Fluid supply systems and methods for therapeutic fluid delivery systems, including those used for negative pressure wound therapy (NPWT) systems and methods.
Abstract:
In some illustrative examples, a bridge suitable for treating a tissue site may include a bridge sealing member and one or more bridge wicking layers. The bridge sealing member may extend along a length of the bridge, and may define an internal passageway in fluid communication between a receiving end of the bridge and a transmitting end of the bridge. The one or more bridge wicking layers may be disposed within the internal passageway of the bridge sealing member. Other apparatus, systems, and methods are disclosed.
Abstract:
Wounds dressings, systems, and methods are presented that involve using a patient's body heat to enhance liquid removal from the wound dressing through a high-moisture-vapor-transmission-rate drape. Additional heat sources or devices, such as nano-antennas or electrical heating elements, may be added or used separately to enhance the removal liquid from the wound dressing. Other dressings, systems, and methods are presented herein.
Abstract:
Fluid supply systems and methods for therapeutic fluid delivery systems, including those used for negative pressure wound therapy (NPWT) systems and methods.