-
公开(公告)号:US10012732B2
公开(公告)日:2018-07-03
申请号:US15859170
申请日:2017-12-29
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/105 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S7/4873 , G01S7/4876 , G01S17/00 , G01S17/02 , G01S17/06 , G01S17/08 , G01S17/10 , G01S17/102 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a pulsed laser diode to produce a plurality of optical seed pulses of light at one or more operating wavelengths between approximately 1400 nm and approximately 1600 nm. The lidar system may also include one or more optical amplifiers to amplify the optical seed pulses to produce a plurality of output optical pulses. Each optical amplifier may produce an amount of amplified spontaneous emission (ASE), and the output optical pulses may have characteristics comprising: a pulse repetition frequency of less than or equal to 100 MHz; a pulse duration of less than or equal to 20 nanoseconds; and a duty cycle of less than or equal to 1%. The lidar system may also include one or more optical filters to attenuate the ASE and a receiver to detect at least a portion of the output optical pulses scattered by a target located a distance.
-
公开(公告)号:US09958545B2
公开(公告)日:2018-05-01
申请号:US15818501
申请日:2017-11-20
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a light source to emit a pulse of light and a receiver to detect a return pulse of light. The receiver can include a first channel to receive a first portion of the return pulse and produce a first digital output signal, and a second channel to receive a second portion of the return pulse and produce a second digital output signal. The receiver can include a logic circuit to produce an output electrical-edge signal in response to receiving the digital output signals. The receiver can also include a time-to-digital converter to determine a time interval based on an emission time of the pulse of light and based on the electrical-edge signal. The lidar system can also include a processor to determine a distance to a target based at least in part on the time interval.
-
公开(公告)号:US20180024241A1
公开(公告)日:2018-01-25
申请号:US15470708
申请日:2017-03-27
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a pulsed laser diode configured to produce an optical seed pulse of light at an operating wavelength between approximately 1400 nm and approximately 1600 nm. The lidar system may also include an optical amplifier configured to amplify the optical seed pulse to produce an eye-safe output optical pulse that is emitted into a field of view. The optical amplifier may produce an amount of amplified spontaneous emission (ASE) associated with the output optical pulse. The lidar system may include an optical filter configured to filter the output optical pulse to reduce the associated ASE. The lidar system may also include a receiver configured to detect at least a portion of the output optical pulse reflected or scattered from the field of view.
-
公开(公告)号:US09841495B2
公开(公告)日:2017-12-12
申请号:US15342595
申请日:2016-11-03
Applicant: Luminar Technologies, Inc
Inventor: Scott R. Campbell , Jason M. Eichenholz , Lane A. Martin , Matthew D. Weed
CPC classification number: G01S7/4817 , G01S7/4812 , G01S7/4816 , G01S17/10 , G01S17/42 , G01S17/89
Abstract: A lidar system may have a light source configured to emit a pulse of light and a scanner that scans a field of view of the light source in a forward-scanning direction across a plurality of pixels located downrange from the lidar system. The scanner can direct the pulse of light toward the second pixel and scan a field of view of a first detector. The first-detector field of view can be offset from the light-source field of view in a direction opposite the forward-scanning direction. When the pulse is emitted, the first-detector field of view can at least partially overlap the first pixel and the light-source field of view can at least partially overlap the second pixel. The first detector can be configured to detect a portion of the pulse of light scattered by a target located at least partially within the second pixel.
-
公开(公告)号:US11940565B2
公开(公告)日:2024-03-26
申请号:US16794500
申请日:2020-02-19
Applicant: Luminar Technologies, Inc.
Inventor: Joseph G. LaChapelle , Jason M. Eichenholz , Alex Michael Sincore
CPC classification number: G01S7/4865 , G01S7/4814 , G01S7/4818 , G01S7/484 , G01S17/10 , G01S17/89 , G01S7/4816 , G01S7/4817 , G01S7/497 , G01S17/02
Abstract: In one embodiment, a lidar system includes a light source configured to emit (i) local-oscillator light and (ii) pulses of light, where each emitted pulse of light is coherent with a corresponding portion of the local-oscillator light. The lidar system also includes a receiver configured to detect the local-oscillator light and a received pulse of light, the received pulse of light including light from one of the emitted pulses of light that is scattered by a target located a distance from the lidar system. The local-oscillator light and the received pulse of light are coherently mixed together at the receiver. The lidar system further includes a processor configured to determine the distance to the target based at least in part on a time-of-arrival for the received pulse of light.
-
公开(公告)号:US11874401B2
公开(公告)日:2024-01-16
申请号:US16378315
申请日:2019-04-08
Applicant: Luminar Technologies, Inc.
Inventor: Joseph G. LaChapelle , Matthew D. Weed , Scott R. Campbell , Jason M. Eichenholz , Austin K. Russell , Lane A. Martin
IPC: G01C3/08 , G01S7/484 , G01W1/02 , G01S17/10 , G01S17/42 , G01S7/00 , G01S7/497 , G01W1/14 , G01S17/95 , G01S7/486 , G01S17/931
CPC classification number: G01S7/484 , G01S7/003 , G01S7/497 , G01S17/10 , G01S17/42 , G01W1/02 , G01W1/14 , G01S7/4868 , G01S17/931 , G01S17/95 , G01S2007/4975 , Y02A90/10
Abstract: In one embodiment, a method for dynamically varying receiver characteristics in a lidar system includes emitting light pulses by a light source in a lidar system. The method further includes detecting, by a receiver in the lidar system, light from one of the light pulses scattered by one or more remote targets to identify a return light pulse. The method also includes determining an atmospheric condition at or near a geolocation of a vehicle that includes the lidar system. The method further includes providing a control signal to the receiver adjusting one or more characteristics of the receiver to compensate for attenuation or distortion of the return light pulses associated with the atmospheric condition.
-
公开(公告)号:US20210088657A1
公开(公告)日:2021-03-25
申请号:US17101146
申请日:2020-11-23
Applicant: Luminar Technologies, Inc.
Inventor: Lawrence Shah , Jason M. Eichenholz , Joseph G. LaChapelle , Alex Michael Sincore , Cheng Zhu
IPC: G01S17/00
Abstract: In one embodiment, a lidar system includes a light source configured to emit an optical signal. The light source includes a seed laser diode configured to produce a seed optical signal and a semiconductor optical amplifier (SOA) configured to amplify the seed optical signal to produce an amplified seed optical signal, where the emitted optical signal includes the amplified seed optical signal. The light source further includes an electronic driver configured to supply electrical current to the seed laser diode and electrical current to the SOA. The lidar system also includes a receiver configured to detect a portion of the emitted optical signal scattered by a target located a distance from the lidar system. The lidar system further includes a processor configured to determine the distance from the lidar system to the target.
-
公开(公告)号:US20210055390A1
公开(公告)日:2021-02-25
申请号:US16794500
申请日:2020-02-19
Applicant: Luminar Technologies, Inc.
Inventor: Joseph G. LaChapelle , Jason M. Eichenholz , Alex Michael Sincore
IPC: G01S7/4865 , G01S17/89
Abstract: In one embodiment, a lidar system includes a light source configured to emit (i) local-oscillator light and (ii) pulses of light, where each emitted pulse of light is coherent with a corresponding portion of the local-oscillator light. The lidar system also includes a receiver configured to detect the local-oscillator light and a received pulse of light, the received pulse of light including light from one of the emitted pulses of light that is scattered by a target located a distance from the lidar system. The local-oscillator light and the received pulse of light are coherently mixed together at the receiver. The lidar system further includes a processor configured to determine the distance to the target based at least in part on a time-of-arrival for the received pulse of light.
-
公开(公告)号:US20210055387A1
公开(公告)日:2021-02-25
申请号:US16794366
申请日:2020-02-19
Applicant: Luminar Technologies, Inc.
Inventor: Joseph G. LaChapelle , Jason M. Eichenholz , Alex Michael Sincore
IPC: G01S7/484 , G01S7/4865 , G01S7/481
Abstract: In one embodiment, a lidar system includes a light source configured to emit (i) local-oscillator light and (ii) pulses of light, where each emitted pulse of light is coherent with a corresponding portion of the local-oscillator light. The light source includes a seed laser configured to produce seed light and the local-oscillator light. The light source also includes a pulsed optical amplifier configured to amplify temporal portions of the seed light to produce the emitted pulses of light, where each amplified temporal portion of the seed light corresponds to one of the emitted pulses of light. The lidar system also includes a receiver configured to detect the local-oscillator light and a received pulse of light, the received pulse of light including light from one of the emitted pulses of light that is scattered by a target located a distance from the lidar system.
-
公开(公告)号:US10720748B2
公开(公告)日:2020-07-21
申请号:US16273736
申请日:2019-02-12
Applicant: Luminar Technologies, Inc.
Inventor: Alain Villeneuve , Jason M. Eichenholz , Laurance S. Lingvay
IPC: H01S3/094 , G01S7/4865 , G01S17/10 , H01S3/067 , H01S3/00 , H01S3/08 , G02B27/09 , H01S5/00 , G01S7/48 , G02B26/10 , G01S17/42 , G01S7/481 , G01S7/484 , G01S7/497 , H01S3/23 , H01S5/40 , G02B27/10 , H01S3/0941 , H01S3/16 , H01S5/024 , H01S5/028 , H01S5/062 , H01S5/0683 , G01S17/931
Abstract: In one embodiment, a laser system includes a seed laser diode configured to produce a free-space seed-laser beam and a seed-laser focusing lens configured to focus the seed-laser beam. The laser system also includes a semiconductor optical amplifier (SOA) that includes a front facet, a back facet, and a waveguide extending from the front facet to the back facet. The SOA is configured to: receive, at the front facet, light from the focused seed-laser beam; amplify the received light as the received light propagates along the SOA waveguide from the front facet to the back facet; and emit, from the back facet, an amplified free-space beam that includes the amplified received light. The laser system further includes a mounting platform, where one or more of the seed laser diode, the seed-laser focusing lens, and the SOA are mechanically attached to the mounting platform.
-
-
-
-
-
-
-
-
-