摘要:
An apparatus (50) for monitoring a treatment process in a treatment interval (58) includes a packer assembly (60) and a sand control screen assembly (64) connected relative to the packer assembly (60). A cross-over assembly (62) provides lateral communication paths (92, 98) downhole and uphole of the packer assembly for respectively delivering of a treatment fluid (84) and taking return fluid. A wash pipe assembly (76) is positioned in communication with the lateral communication path (98) uphole of the packer assembly (60) and extending into the interior of the sand control screen assembly (64). At least one sensor (80) is operably associated with the wash pipe assembly (76) to collect data relative to at least one property of the treatment fluid during a treatment process such that a characteristic of the treatment fluid (84) is regulatable during the treatment process based upon the data.
摘要:
A method and apparatus for generating patching resources in an information processing system having operating instructions on a Read Only Memory Device. The present invention simplifies the patch generation and installation processes. A patch resource is generated and used by a patch installation process. Patch resources are generated for each ROM version by comparing previous ROM versions to the new ROM version. A patch resource is comprised of a plurality of entries, each of which defines a vector table address, an offset into the vector table and the routine to be inserted. By comparing routines between the ROM versions, routines which are different or new are identified. These routines will become patch resource entries. For patch installation, the ROM version number for the installed ROM is determined; the proper patching resource is retrieved, and the patch resource entries cause the patches to be installed. Patch installation is performed by the steps of modifying vector tables to include the addresses for the new routines.
摘要:
Methods of creating high porosity propped fractures in portions of subterranean formations, including method of forming a high porosity propped fracture in a subterranean formation comprising providing a slurry comprising a fracturing fluid and proppant particulates; introducing the slurry into a portion of a fracture within the subterranean formation; and, depositing the proppant particulates into the portion of the fracture within the subterranean formation so as to form a high porosity propped fracture.
摘要:
Provided herein are methods for controlling the migration of particulates within a portion of a subterranean formation that comprise aqueous tackifying treatment fluids, curable resin compositions, and/or noncurable resin compositions.
摘要:
Methods are provided that include a method comprising providing a consolidating agent emulsion composition comprising an aqueous fluid, an emulsifying agent, and a consolidating agent; and introducing the consolidating agent emulsion composition into at least a portion of a subterranean formation. In some embodiments, the consolidating agent emulsion composition may be introduced into at least a portion of a propped fracture that comprises proppant particulates and allowed to at least partially consolidate at least a portion of the propped fracture. In some embodiments, the consolidating agent emulsion composition comprises a resin composition. Additional methods are also provided.
摘要:
In one embodiment, the present invention provides a method comprising providing a treatment fluid that comprises a base fluid and a silicone-tackifier matrix composition that comprises at least one silicone polymer component, at least one tackifying agent, and at least one curing agent and/or at least one cross linking agent; placing the treatment fluid in a subterranean formation; and allowing the silicone-tackifier matrix to form at least one silicone-tackifier matrix therein.
摘要:
Methods of improving load recovery using hydrophobic coatings to enhance the recovery of treatment fluids from subterranean formations may include the use of hydrophobic coating agents. In particular, such methods may include the steps of coating a plurality of particulates so as to form a plurality of hydrophobically-coated particulates. The presence of these hydrophobically-coated particulates downhole may enhance the recovery of aqueous treatment fluids.
摘要:
Methods for stabilizing unconsolidated or weakly consolidated portions of a subterranean formation and controlling the production of water in those portions include introducing a consolidating agent into the subterranean formation so as to transform a portion of the subterranean formation surrounding the well bore into a consolidated region; and introducing a relative permeability modifier fluid into the subterranean formation so as to penetrate at least a portion of the consolidated region. Fracturing steps may be used to reconnect the well bore to portions of the formation (e.g., formation reservoirs) in certain embodiments. Optionally, preflush fluids, after-flush fluids, and shutting-in periods may be used as desired.
摘要:
Methods of controlling particulate migration in a portion of a subterranean formation comprising placing a pre-flush fluid into the portion of the subterranean formation; and then, placing a low-viscosity adhesive substance diluted with an aqueous dissolvable solvent into the portion of the subterranean formation; wherein the portion of a subterranean formation being treated has a regain permeability of at least about 70%. Methods of creating a stabilized region around a portion of a subterranean formation around a well bore having a screen or liner in place in that portion of the subterranean formation comprising placing a pre-flush fluid into the portion of the subterranean formation; and then, placing a low-viscosity adhesive substance diluted with an aqueous dissolvable solvent into that portion of the subterranean formation; wherein the portion of a subterranean formation being treated has regain permeability of at least about 70%.
摘要:
The invention provides a method for treating a subterranean formation penetrated by a wellbore. The method comprises the steps of: (a) introducing a composition through the wellbore into the subterranean formation, wherein the composition comprises: (i) a solvent consisting essentially of an aqueous dissolvable solvent comprising any solvent that is at least 25% by weight soluble in water, wherein the solvent is from about 90% to about 99.9% by weight of the composition; and (ii) a curable resin, wherein the curable resin is from about 0.01% to about 10% by weight of the composition; wherein the curable resin and the solvent are mutually selected such that, for the ratio of the curable resin to the solvent, the curable resin is soluble in the solvent; and (b) installing a mechanical sand control device into the wellbore either before or after introducing the composition into the wellbore.