摘要:
A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.
摘要:
A fluid coupling device is disclosed of the type having an output coupling assembly (13) and an input coupling member (11). Control of the flow of viscous fluid between a reservoir chamber (35) and an operating chamber (33) is by rotation of a valve arm (43), to cover or uncover a fill opening (45). Rotation of the valve arm is affected by an actuator assembly (61). A raised portion (79) on a plate (73) attached to an armature (67) biases the valve arm (43) into sealing engagement with a surface (31) which defines a fill port (45,89), thus reducing fluid leakage from the reservoir (35) back into the operating chamber (33). A portion (85) which covers the fill port includes a dimple (91) which is disposed within the fill opening when the valve arm is in its closed position (FIG. 5). As the valve arm begins to move toward its open position (FIG. 6), the dimple (91) causes a camming and axial separation of the valve arm from the adjacent surface, to reduce the undesirable results of viscous drag on the valve arm.
摘要:
A fluid coupling device is disclosed including a cover member (11) and an actuator assembly (35) disposed adjacent thereto for actuating a valve member (31). The cover includes an annular fluxring (49), which may be cast into the cover (11) and defines a radially inner surface (57). Extending radially inward from the surface (57) is an annular dovetail portion (59) defining radially outer surfaces (61,63). The cover member includes a cast central portion (55) disposed radially inward of the fluxring (49). As the cast central portion (55) cools, subsequent to casting, it shrinks and seals against the outer surfaces (61,63) of the dovetail (59), because the cover member (11) has a coefficient of thermal contraction which is greater than that of the fluxring (49), thus eliminating the formation of radial clearances between the cast central portion (55) and the inner surface (57) of the fluxring (49).
摘要:
A fluid coupling device is provided of the type including an input coupling (11) and an output coupling assembly (13) including a case cover member (17) including a chimney portion (39) and chimney extension (81). The coupling includes a valve plate (31) defining a fluid port (45), and operation of the coupling is controlled in response to the rotational position of the valve arm (43), by means of a valve shaft (41). The position of the valve shaft (41) is controlled, in response to an electrical input signal by means of an actuator assembly (61), which includes an annular steel housing member (63). The housing member is stationary, and is mounted relative to the chimney extension (81) by means of a set of ball bearings (77) which comprise the only bearing support between the actuator assembly (61) and the rotating coupling. As a result of this design, there is no high speed interface between the rotating coupling and the stationary actuator assembly to result in excessive wear, heat generation, and degradation of performance.
摘要:
A fluid coupling (11) is attached to a pulley (25) attached to an input shaft (35) and a hub (33) having a cylindrical opening. The coupling has an output member (11) and an input member rotatably disposed within a viscous fluid chamber to transmit torque from the input member to the output member in response to relative rotation therebetween. The input member includes a shaft (17) having a boss (47) adjacent the rear surface of the output member. The boss defines a cylindrical extension (49) located within the hub opening. A locking "V" groove (51) is located within the hub opening on the extension. Threaded openings (57) are radially disposed within the hub and have center lines off-set with respect to the center line of the "V" groove when the components are assembled. A set screw (59) in each opening has a frusto-conical surface (61) engaged with an angled surface (63) of the "V" groove to draw the coupling and input shafts together. Radial surfaces (55 and 45) perpendicular to the axis A--A of rotation are located on the boss and hub and aid alignment of and securement of the two members. The boss also includes a pilot opening (53) engaged with the input shaft to aid alignment.