Thermal control in a stereolithographic 3D printer

    公开(公告)号:US12128608B2

    公开(公告)日:2024-10-29

    申请号:US17543369

    申请日:2021-12-06

    CPC classification number: B29C64/124 B29C64/188 B29C64/20 B33Y10/00 B33Y30/00

    Abstract: A method for printing a 3D part in a layer-wise manner includes providing a pool of polymerizable liquid in a vessel over a build window and positioning a downward-facing build platform in the pool, thereby defining a build region above the build window. The method includes selectively curing a volume of polymerizable liquid in the build region by imparting electromagnetic radiation through the build window to form a printed layer of the part adhered to the build platform and actively cooling the build window to remove energy imparted by the electromagnetic radiation and the polymerization reaction of the polymerizable liquid such that the printed layer is between about 1° C. and about 30° C. below an average part temperature prior to raising the print layer and printing the next layer.

    Rotational position error compensation of print heads in a 3D printer and methods thereof

    公开(公告)号:US10889068B1

    公开(公告)日:2021-01-12

    申请号:US15287057

    申请日:2016-10-06

    Abstract: A 3D printer is configured to print a 3D part. The 3D printer includes a print head carried by a head gantry and configured to operably move the print head along planar tool paths. The 3D printer includes at least one head gantry actuator coupled to the head gantry and configured to move the print head in a plane and a print head actuator coupled to the print head and configured to move the print head in a direction substantially orthogonal to the plane. A sensor is fixedly mounted to the print head and configured to output a first signal that is directly or indirectly related to an acceleration of the print head, and a gyroscope is fixedly mounted to the print head and configured to output a second signal related to a rotational position of the print head. The 3D printer includes a controller configured to determine a rotational position error of the print head relative to a predetermined position based on the first signal and the second signal and to output one or more signals to the at least one head gantry actuator and/or the print head actuator to compensate for the rotational position error of the print head.

    Continuous liquid interface production system with viscosity pump

    公开(公告)号:US10384439B2

    公开(公告)日:2019-08-20

    申请号:US15343752

    申请日:2016-11-04

    Abstract: A continuous liquid interface production system includes a source of optical stimulation. The system includes a vessel configured to retain a pool or film of optically sensitive monomer and a substantially optically transparent plate retained by the vessel. The optical stimulation is directed through the plate and into the pool or the film based upon a sliced 3D model of the part. The system includes source of reaction inhibitor wherein the substantially optically transparent plate allows the reaction inhibitor to permeate through the plate and into the pool or the film such that a sufficient amount of reaction inhibitor is within the pool or the film to create a zone proximate the plate that prevents polymerization therein. A build platen is configured to be at least partially immersed into the pool or the film and above the zone as a part is initially being built, wherein a build platen actuator moves the build platen away from the pool or the film in a direction substantially normal to a top surface of the plate. A relative movement actuator provides relative movement between the plate and the part in a direction substantially parallel to the top surface of the plate such that a viscosity pump effect is created that forces monomer between the part being built and the plate.

    CONTINUOUS LIQUID INTERFACE PRODUCTION SYSTEM WITH VISCOSITY PUMP

    公开(公告)号:US20170129169A1

    公开(公告)日:2017-05-11

    申请号:US15343752

    申请日:2016-11-04

    Abstract: A continuous liquid interface production system includes a source of optical stimulation. The system includes a vessel configured to retain a pool or film of optically sensitive monomer and a substantially optically transparent plate retained by the vessel. The optical stimulation is directed through the plate and into the pool or the film based upon a sliced 3D model of the part. The system includes source of reaction inhibitor wherein the substantially optically transparent plate allows the reaction inhibitor to permeate through the plate and into the pool or the film such that a sufficient amount of reaction inhibitor is within the pool or the film to create a zone proximate the plate that prevents polymerization therein. A build platen is configured to be at least partially immersed into the pool or the film and above the zone as a part is initially being built, wherein a build platen actuator moves the build platen away from the pool or the film in a direction substantially normal to a top surface of the plate. A relative movement actuator provides relative movement between the plate and the part in a direction substantially parallel to the top surface of the plate such that a viscosity pump effect is created that forces monomer between the part being built and the plate.

    CONICAL VISCOSITY PUMP WITH AXIALLY POSITIONABLE IMPELLER AND METHOD OF PRINTING A 3D PART

    公开(公告)号:US20170122322A1

    公开(公告)日:2017-05-04

    申请号:US15337503

    申请日:2016-10-28

    Abstract: A pump assembly for use in an additive manufacturing system includes a viscosity pump having a first end and a second end wherein the first end has a cross sectional area greater than a cross sectional area of the second end. The viscosity pump has a conical shaped inner surface defining a pump chamber, an inlet proximate the first end and an outlet proximate the second end. The viscosity pump includes an impeller having an axis of rotation, where the impeller has a shaft positioned through the first end of the first housing and into the pump chamber. The impeller includes a distal tip-end at a distal end of the shaft wherein the impeller is configured to be axially displaced within the pump chamber of the viscosity pump parallel to the axis of rotation. An actuator is coupled to a proximal end of the impeller, wherein the actuator is configured to move the impeller parallel to the axis of rotation.

Patent Agency Ranking