Abstract:
An apparatus comprises a slider having an air bearing surface (ABS), a leading edge, and a trailing edge opposing the leading edge. A writer having a write pole is situated at or near the ABS. A near-field transducer (NFT) is situated at or near the ABS and between the write pole and the leading edge of the slider. An optical waveguide is configured to couple light from a laser source to the NFT. A contact sensor is situated between the write pole and the trailing edge. The contact sensor comprises a first ABS section situated at or near the ABS, a secondABS section situated at or near the ABS and spaced apart from the first ABS in a cross-track direction by a gap, and a distal section extending away from the ABS and connecting the first ABS section with the second ABS section.
Abstract:
An apparatus comprises a slider having an air bearing surface (ABS), a leading edge, and a trailing edge opposing the leading edge. A writer having a write pole is situated at or near the ABS. A near-field transducer (NFT) is situated at or near the ABS and between the write pole and the leading edge of the slider. An optical waveguide is configured to couple light from a laser source to the NFT. A contact sensor is situated between the write pole and the trailing edge. The contact sensor comprises a first ABS section situated at or near the ABS, a secondABS section situated at or near the ABS and spaced apart from the first ABS in a cross-track direction by a gap, and a distal section extending away from the ABS and connecting the first ABS section with the second ABS section.
Abstract:
A bond pad set includes at least one ground pad and at least one electrical bond pad configured to bias and send/receive signals. The bond pad set is electrically connected to a multiplicity of electrical components. At least one electrical bond pad of the bond pad set is shared between two or more of the electrical components.
Abstract:
A slider of a heat-assisted magnetic recording head comprises an air bearing surface and an optical waveguide configured to receive light from a laser source. The slider comprises a plurality of electrical bond pads including a first bond pad and a second bond pad. A first resistive sensor is configured to sense for spacing changes and contact between the slider and a magnetic recording medium at or near a first close point of the slider. A second resistive sensor is configured to sense for spacing changes and contact between the slider and the medium at or near a second close point of the slider. A bolometer is situated at a location within the slider that receives at least some of the light communicated along the optical waveguide. The first resistive sensor, the second resistive sensor, and the bolometer are coupled together and between the first and second bond pads.
Abstract:
A slider of a heat-assisted recording head comprises electrical bond pads coupled to bias sources and a ground pad, an air bearing surface, and a waveguide configured to receive light from a laser source. A contact sensor proximate the air bearing surface is coupled between a first bond pad and a second bond pad. A bolometer is coupled to a reference thermal sensor. The bolometer is situated at a slider location that receives at least some of the light communicated along the waveguide. The reference thermal sensor is situated at a slider location unexposed to the light communicated along the waveguide. The bolometer and reference thermal sensor are coupled between the first and second bond pads and in parallel with the contact sensor. A ground connection is coupled to the ground pad and at a connection between the bolometer and the reference thermal sensor.
Abstract:
An apparatus includes a slider body of a disk drive. The slider body is electrically coupled to a plurality of end bond pads. A voltage applied to one more of the end bond pads sets a surface potential of the slider body.
Abstract:
An apparatus comprises circuitry configured to apply an AC signal having a frequency to one of a slider of a recording head and a magnetic recording medium. The applied AC signal causes an oscillation in an electrostatic force and clearance between the slider and the medium at the frequency of the AC signal. A thermal sensor is configured to generate a sensor signal at the AC signal frequency in response to sensing changes in temperature resulting from the oscillating clearance. A detector is coupled to the circuitry and the thermal sensor. The detector is configured to detect one or both of head-medium spacing changes and head-medium contact using a phase of a first harmonic or an amplitude of a second harmonic of the thermal sensor signal.
Abstract:
An apparatus includes a slider of a recording head comprising a plurality of electrical bond pads coupled to bias sources and a ground pad. Each of a plurality of electrical components of the slider is coupled to at least one of the electrical bond pads. At least one of the electrical bond pads is a shared electrical bond pad coupled to at least two of the electrical components. At least one diode is coupled to at least one of the electrical bond pads and at least one of the electrical components.
Abstract:
A data recording head may consist of at least a charge control circuit that has a substrate, ground, surface charge circuitry, and data reader circuitry. The substrate may be electrically isolated from the ground and electrically connected between the surface charge circuitry and a non-zero fixed voltage. The surface charge circuitry can be configured to apply a varying substrate charge to the substrate at a predetermined frequency to alter a head media spacing between the substrate and a data storage medium.
Abstract:
An apparatus comprising a writer, a reader, and a sensor configured to at least sense thermal asperities of a magnetic storage medium. The apparatus includes a writer heater configured to thermally actuate the writer, a reader heater configured to thermally actuate the reader, and a sensor heater configured to thermally actuate the sensor. The thermally actuated sensor is configured to detect thermal asperities arising from the magnetic storage medium during a topographical survey of the medium. The sensor heater is configured to be rendered inoperable subsequent to the survey in response to receiving a predetermined signal while the writer and the reader heaters remain operable.