摘要:
The present invention relates to efficient organic light emitting devices (OLEDs) doped with multiple light-emitting dopants, at least one dopant comprising a phosphorescent emitter, in a thin film emissive layer or layers. The present invention is directed to an efficient phosphorescent organic light emitting device utilizing a plurality of emissive dopants in an emissive region, wherein at least one of the dopants is a phosphorescent material. Thus, the present invention provides an organic light emitting device comprising an emissive region, wherein the emissive region comprises a host material, and a plurality of emissive dopants, wherein the emissive region is comprised of a plurality of bands and each emissive dopant is doped into a separate band within the emissive region, and wherein at least one of the emissive dopants emits light by phosphorescence.
摘要:
A structure is provided that includes an aperiodic dielectric stack. The structure may include a substrate, a device disposed over the substrate, and a first dielectric stack disposed between the substrate and the device. The first dielectric stack includes a plurality of layers comprising a first dielectric material, wherein at least two of the layers comprising a first dielectric material have substantially different thicknesses, as well as a plurality of layers comprising a second dielectric material. The average outcoupling efficiency into air of the device over a bandwidth of at least 300 nm may be at least 40% greater than that of an otherwise identical device disposed in a structure without the first dielectric stack. The substrate may have a treated surface such that light that may otherwise be waveguided in the substrate is outcoupled into air, and the average outcoupling efficiency into air of the device over a bandwidth of at least 300 nm may be at least 10% greater than that of an otherwise identical device disposed in a structure without the first dielectric stack. The structure may include an optical cavity defined by a first end layer and a second end layer, where the first end layer further comprising a first dielectric stack having a plurality of layers comprising a first dielectric material, wherein at least two of the layers comprising a first dielectric material have substantially different thicknesses, and a plurality of layers comprising a second dielectric material. An optoelectronic device having a first active layer may be disposed within the optical cavity.
摘要:
The present invention relates to efficient organic light emitting devices (OLEDs), and more specifically to organic materials used in such devices. More specifically, the present invention relates to materials with improved stability and efficiency when incorporated into an OLED.
摘要:
An organic light emitting device is provided, having a p-doped organic layer, an n-doped layer, and a phosphorescent emissive layer disposed between the p-doped and n-doped layers. Blocking layers are used to confine electrons, holes, and excitons in the emissive layer. A device having a cathode on the top is provided, as well as an “inverted” device having a cathode on the bottom.
摘要:
A method of fabricating an organic optoelectronic device having a bulk heterojunction comprises the steps of: depositing a first layer over a first electrode by organic vapor phase deposition, wherein the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer, wherein the interface of the second layer on the first layer forms a bulk heterojunction; and depositing a second electrode over the second layer to form the optoelectronic device. In another embodiment, a first layer having protrusions is deposited over the first electrode, wherein the first layer comprises a first organic small molecule material. For example, when the first layer is an electron donor layer, the first electrode is an anode, the second layer is an electron acceptor layer, and the second electrode is a cathode. As a further example, when the first layer is an electron acceptor layer, the first electrode is a cathode, the second layer is an electron donor layer, and the second electrode is an anode.
摘要:
Emissive phosphorescent organometallic compounds are described that produce improved electroluminescence, particularly in the blue region of the visible spectrum. Organic light emitting devices employing such emissive phosphorescent organometallic compounds are also described. Also described is an organic light emitting layer including a host material having a lowest triplet excited state having a decay rate of less than about 1 per second; a guest material dispersed in the host material, the guest material having a lowest triplet excited state having a radiative decay rate of greater than about 1×105 or about 1×106 per second and wherein the energy level of the lowest triplet excited state of the host material is lower than the energy level of the lowest triplet excited state of the guest material.
摘要:
The present invention is directed to an organic optoelectronic device, such as an OLED device, provided with a vacuum deposited conformal composite coating for protecting the device from environmental elements such as moisture and oxygen. The present invention is also directed to a method for vacuum depositing a conformal composite coating directly onto an organic optoelectronic device, such as an OLED device, on a substrate. According to one embodiment, the invention provides a protected OLED device comprising a substrate; an active region positioned on said substrate; a first protective layer disposed over the active region; and a second protective layer disposed over the first protective layer, wherein said second protective layer comprises multiple sub-layers that further comprise an alternating series of two or more first polymeric sub-layers and two or more first high density sub-layers.
摘要:
The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.
摘要:
A method for forming an electronic device such as a passive color OLED display. Bottom electrodes are patterned onto a substrate in rows. Raised posts formed by photoresist are patterned into columns oriented orthogonally to the bottom row electrodes. One or more organic layers, such as R, G, B organic emissive layers are patterned over the raised posts and bottom electrodes using organic vapor jet printing (OVJP). An upper electrode layer is applied over the entire device and forms electrically isolated columnar electrodes due to discontinuities in the upper electrode layer created by the raised columnar posts. This permits patterning of the upper electrodes over the organic layers without using photolithography. A device formed by this method is also described.
摘要:
The present invention relates to OLEDs utilizing direct injection to the triplet state. The present invention also relates to OLEDs utilizing resonant injection and/or stepped energy levels.