摘要:
In order to compensate for chromatic dispersion ad dispersion slope over an entire wavelength band of the optical signal, the wavelength band is split into a plurality of bands, and chromatic dispersion compensation is made to make chromatic dispersion in a central wavelength of each of the bands zero.
摘要:
The optical node connects N networks to each other (where N is an integer larger than one). Each of the N networks respectively includes a first transmission path and a second transmission path. The optical node includes a switching unit that connects the first transmission path of one network of the N networks to other (N−1) networks; a failure detector that detects failure in the first transmission path of the network; and a control unit that causes the switching unit to connect the second transmission path of the network to the other (N−1) networks when the failure is detected.
摘要:
A repeating apparatus disposed at an end point of each divisional repeating interval of a light transmission line performs a first dispersion compensation step, an optical add/drop multiplexing step and a second dispersion compensation step to perform repeating transmission. The ratio of an over compensation amount at the second dispersion compensation step to the sum of dispersion compensation amounts at the first and second dispersion compensation steps is set so as to gradually vary together with the transmission distance from the terminal apparatus for transmission at which the repeating apparatus is disposed on the light transmission line so that degradation of wavelengths to be received by the terminal apparatus for reception is suppressed while dispersion compensation is performed with a high degree of accuracy at each optical add/drop multiplexing point on the transmission line.
摘要:
An optical transmission apparatus has a first wavelength selective switch (WSS) for route switching, provided with respect to each route, to selectively output signal light from a first input route to second through Nth output routes and to selectively output signal lights from second through Nth input routes to a first output route, for every wavelength, a second WSS for add and drop, to selectively output a signal light from an add port to the first through Nth output routes via the first WSS for every wavelength, and to selectively output the signal lights from the first through Nth input routes to a drop port via the first WSS for every wavelength, and an optical coupler to multiplex each of the signal lights output from the first WSS to the output routes and each of the signal lights output from the second WSS to the output routes, for every route, and to send multiplexed signal light to a first WSS of an other route, and to branch and supply multiplexed signal light input from said other route to the first WSS and the second WSS. The signal lights input and output by the first WSS and the second WSS are transmitted bidirectionally within a single optical transmission line.
摘要:
The present invention relates to a Raman amplifier where flexibility in device design considering both of Raman amplification and dispersion compensation is high. In the Raman amplifier, the Raman amplification optical fiber included in the optical amplification section and the dispersion compensating optical fiber included in the dispersion compensation section are arranged while being optically connected to each other. Since the optical amplification section and the dispersion compensation section are provided as independent optical devices, one device can be designed without being restricted to the design conditions of the other device.
摘要:
Different bands (C-band and L-band) are allotted respectively to an upstream optical signal and a downstream optical signal. In a transmission-path optical fiber for Raman amplification, the C-band optical signal is amplified by pumping light from a C-band pumping light source, and the L-band optical signal is amplified by pumping light from an L-band pumping light source. As a result of this configuration, the optical signals are Raman-amplified through backward pumping in both upstream and downstream directions, whereby negative effects, which could be exerted on the optical signals by forward pumping, can be avoided.
摘要:
The present invention relates to a method for gain equalization, for example. First, an optical transmission line including an optical amplifier having a gain changing nonlinearly with wavelength is provided (step (a)). Secondly, gain equalization of the optical transmission line is performed so as to obtain a gain changing substantially linearly with wavelength (step (b)). Finally, gain equalization of the optical transmission line is performed so as to obtain a gain remaining substantially unchanged with wavelength (step (c)). According to this method, gain equalization of the optical transmission line is performed so as to obtain a gain changing substantially linearly with wavelength. Accordingly, variations in equalization error due to changes in system condition can be easily suppressed.
摘要:
The present invention aims at providing an optical transmission system for improving transmission characteristics, taking account of the nonlinear optical effect to be caused not only in an optical fiber transmission path wherein the distributed Raman amplification is performed but also in an amplifying medium wherein the discrete Raman amplification is performed, within an optical transmission device. To this end, the optical transmission system of the present invention controls, in each repeating section, the supplying conditions of pumping lights at a distributed Raman amplifier and a discrete Raman amplifier, based on signal light powers at a signal light input point to the optical fiber transmission path and a signal light output point from the optical fiber transmission path, and signal light powers at a signal light input point to a DCF (amplifying medium) and a signal light output point from the DCF within an optical repeater, so that an amount of nonlinear optical effect caused in one repeating section is brought to a required value or less.