摘要:
A distortion compensation circuit with frequency detection may be used with one or more non-linear elements, such as a laser, to compensate for frequency-dependent distortion generated by the non-linear element(s), for example, in broadband multichannel RF applications. Embodiments of the distortion compensation circuit may include a frequency detector circuit that detects changes in frequency loading conditions in the distortion compensation circuit such that distortion compensation may be adjusted to compensate for distortion under different frequency loading conditions. In a multichannel RF system with multiple channel operation modes, for example, the frequency detector circuit may detect changes in the frequency loading condition as a result of changing operation modes.
摘要:
A distortion compensation circuit including a configurable delay may be used with one or more non-linear elements, such as a laser, to compensate for distortion generated by the non-linear element(s), for example, in broadband RF applications. Embodiments of the distortion compensation circuit may include a primary signal path with a configurable delay segment and a secondary signal path including at least one distortion generator. The configurable delay segment may be selectively configured to provide different delay settings to accommodate different RF loading conditions such that the delayed RF signal on the primary signal path is aligned with the distortion products generated on the secondary signal path when combined to form an RF signal with distortion compensation.
摘要:
A modulated optical system with anti-clipping reduces or corrects clipping that might occur in the laser as a result of negative spikes or peaks in a multichannel RF signal. The system generally detects an envelope of the RF signal to generate an anti-clipping signal that follows at least a portion of the envelope and prevents one or more negative peaks from causing clipping by adjusting a bias current in response to the anti-clipping signal. The system may also reduce cross modulation by clamping the anti-clipping signal at an anti-clipping limit during lower power periods of the RF signal.
摘要:
In transmit pre-coding, a bandwidth and a feedback period to one or more CQI reporting units and a bandwidth and a feedback period to one or more PMI reporting units are assigned, respectively. Sub-divisions in time and/or frequency corresponding to the assigned bandwidths and the assigned feedback periods are dynamically adjusted based at least on uplink channel state information corresponding to the bandwidth and the feedback period assigned to the CQI reporting units, and the bandwidth and the feedback period assigned to the PMI reporting units. One or more feedback messages are generated based at least on the channel state information over the adjusted sub-divisions in time and/or frequency corresponding to the CQI reporting units and to the PMI reporting units, respectively. The bandwidth and/or the feedback period may be assigned based on the channel state information or as a function of a feedback rate.
摘要:
A tray used to place granular materials on a reading surface of an image reading device has provided thereto a transparent bottom plate, a background vertically upstanding relative to the bottom plate, and reflective elements arranged at predetermined intervals parallel to the background. In order to enable an imaging means of the image reading device to receive a side view image of the granular materials in the thickness direction thereof with the granular materials placed on the bottom plate of the tray, the tray is provided with a technical means for bending and guiding, by the reflective elements, light from the granular materials in the thickness direction thereof to the direction of the optical axis of the imaging means.
摘要:
A mobile device estimates channel state information (CSI) comprising, for example, CQI and/or SNR, for a downlink channel. The estimated CSI is non-uniformly quantized and transmitted to the base station over a finite-rate feedback channel. Different portions of the estimated CSI are quantized using different quantization step sizes, which are determined according to a performance metric function such as a channel capacity function of the estimated CSI. A quantization step size for a portion of the estimated CSI is increased if a low distribution probability is indicated by the portion of the estimated CSI. A quantization step size for a portion of the estimated CSI is decreased if a high distribution probability is indicated. The mobile device quantizes the estimated CSI using the determined quantization step sizes to transmit to the base station over the finite-rate feedback channel. Downlink data transmission is received according to the transmitted CSI.
摘要:
A method and system for iterative discrete Fourier transform (DFT) based channel estimation using minimum mean square error (MMSE) techniques are presented. Aspects of the method and system include a procedure for computing channel estimates in both the time domain and frequency domain (or mixed domain) using an iterative DFT method based on MMSE techniques. One aspect of the method and system may achieve low computational complexity and produce more accurate channel estimate values in low signal to noise ratio (SNR) regimes in comparison to conventional DFT-based channel estimation methods, which utilize least squares (LS) techniques. The method and system disclosed herein may be practiced in connection with a wide range of orthogonal frequency division multiplexing (OFDM) based systems, for example wireless local area networks (WLAN, for example IEEE 802.11 WLAN systems), and LTE systems.
摘要:
A mobile device estimates channel status information (CSI) for an associated single user downlink multiple-input multiple-output (MIMO) channel. The estimated CSI is quantized using a finite quantization resolution. The quantized CSI is communicated to the base station over a finite-rate feedback channel. Intended downlink data transmission is scheduled by the base station according to the transmitted CSI, and received by the mobile device, accordingly. The estimated CSI comprise generalized channel quality information such as channel capacity and channel direction. The base station selects a first user having a strongest channel capacity according to quantized CSI received from associated mobile devices. Beams orthogonal to a single user downlink MIMO channel of the selected first user are broadcasted. Quantized relative channel direction matrices and projected channel capacity are received from remaining mobile devices. A user having a strongest projected channel capacity is selected a second user for the user group.
摘要:
A method and system for processing communication signals is provided and may comprise, quantizing a channel estimate at a MIMO receiver onto a codebook based on a cost function, wherein the codebook comprises a plurality of unitary matrices. A codebook index may be fed back from the MIMO receiver to a MIMO transmitter, wherein the codebook index is associated with one of the plurality of unitary matrices that minimizes the cost function. The cost function may be minimized by choosing a smallest scalar cost from a plurality of scalar costs, wherein each one of the scalar costs is generated from one or more sums and one or more products of elements of a product matrix, and wherein the product matrix is generated from one of the plurality of unitary matrices, a matrix comprising the channel estimate, and their respective Hermitian Transposes.
摘要:
A method for processing signals in a communication system includes selecting, from a plurality of users, a first user having a channel gain that is greater than a channel gain corresponding to a remaining portion of the plurality of users. At least a second user may be selected from a portion of the remaining portion of the plurality of users, based on a feedback channel gain of the second user. The selected second user may have a channel direction that is approximately orthogonal to a channel direction of the first user. System capacity may be determined based on the selecting of the first user and the selecting of the second user. The channel gain may be defined by a quantized channel gain. A quantized channel direction of the selected first user may be determined for the selecting of the second user.