摘要:
A pixel structure is provided. The pixel structure comprises a lower substrate with a transistor and pixel area; a first patterned conductive layer, which has a data line and a gate within the transistor area that is disposed on the lower substrate; a patterned insulator layer covering the first patterned conductive layer; an active layer disposed on the patterned insulator layer above the gate; a second patterned conductive layer with a gate line disposed on the patterned insulator layer, source and drain, wherein the source and the drain are disposed on the active layer; a pixel electrode disposed on the patterned insulator layer and electrically connected to the drain; a patterned passivation layer disposed on the patterned insulator layer, gate line, source, drain and pixel electrode; and a third patterned conductive layer, which has a data line connecting electrode, a gate line connecting electrode, at least one alignment electrode and a common electrode. The data line is electrically connected to the source through the data line connecting electrode; the gate line is electrically connected to the gate through the gate line connecting electrode; the alignment electrode is electrically connected to the pixel electrode; and a portion of the common electrode is disposed above the data line.
摘要:
The present invention provides a pixel structure and exposure method thereof. This present invention divides these devices that influence the optical characteristic of the pixel region into two parts. Each part is located in a sub-pixel region of the pixel region. Different photolithography process rounds are performed in the different sub-pixel regions.
摘要:
A biased bending vertical alignment mode liquid crystal display is provided. The liquid crystal display includes a first substrate having a first electrode, a second substrate having a second electrode and a third electrodes, a plurality of first slits formed on the second electrode over the third electrodes, a plurality of second slits formed on the second electrode without covering the third electrodes, wherein the plurality of first slits and the plurality of second slits divide the second electrode into a plurality of fragmented electrode portions, and the plurality of first slits are alternate with the plurality of second slits, and a liquid crystal layer having a plurality of liquid crystal molecules and interposed between the first substrate and the second substrate.
摘要:
Disclosed is a liquid crystal display device improved transmittance and aperture ratio. The liquid crystal display device comprises a lower substrate, an upper substrate facing the lower substrate, and a liquid crystal interposed between the lower and upper substrate. A gate bus line and a data bus line is formed on the lower substrate in a matrix arrangement to define unit cell region. A thin film transistor is located near intersection of the gate bus line and the data bus line, for switching a signal inputted from the data bus line according to voltage applied to the gate bus line. A counter electrode is located inside unit cell region, for driving the liquid crystal, has a plurality of branches arranged parallel to each other and separated by a selected distance. A pixel electrode is connected to the thin film transistor to drive the liquid crystal together with the counter electrode and includes a plurality of slots for exposing the branches of the counter electrode. The counter electrode and the pixel electrode are formed out of a transparent conductive material. Also, the counter electrodes and the pixel electrodes are electrically insulated.
摘要:
A capacitive touch panel including a substrate, a plurality of first touch pads, a plurality of first dummy pads, an insulator layer, a plurality of second touch pads, and a plurality of second dummy pads is provided. The first touch pads arranged along a first direction are electrically connected. Each first touch pad has at least a first opening. The insulator layer covers the first touch pads and the first dummy pads insulated therefrom. The second touch pads arranged along a second direction are electrically connected and each second touch pad has at least a second opening. The size of the second opening is substantially larger than that of each first dummy pad. The second dummy pads insulated from the second touch pads are disposed on the insulator layer above the first opening, wherein the size of the first opening is substantially larger than that of each second dummy pad.
摘要:
In a capacitive touch panel having touch cells arranged in a two-dimensional array and defined by two coordinates, the present invention provides a third coordinate. In particular, the touch cells in a row are electrically connected a first sensing element and the touch cells in a column are electrically connected in a second sensing element. The first sensing elements can be arranged into two or more touch zones. Each of the touch zones has a zone sensing element for defining the zone coordinate. Some of the first sensing elements in one touch zone are electrically connected to the corresponding first sensing elements in the other touch zones in series. As such, the number of terminals connected to the first sensing elements can be reduced.
摘要:
A touch panel includes an insulating base, a plurality of first sensing electrodes, a plurality of second sensing electrodes and a plurality of third sensing electrodes. The insulating base has a first surface and a second surface. The first sensing electrodes and the second sensing electrodes are disposed on the first surface of the insulating base, and electrically isolated from each other. The third sensing electrodes are disposed on the second surface of the insulating base, and each third sensing electrode at least partially overlaps a portion of the first sensing electrodes and a portion of the second sensing electrodes.
摘要:
In a touch-sensing structure for a touch panel and a touch-sensing method thereof, the touch-sensing structure includes a plurality of first conducting wires paralleled to each other and a first conductor. A terminal of each first conducting wire is electrically coupled to the first conductor, so as to divide the conductor into a plurality of first line segments. The resistance of each first conducting wire is smaller than that of each first line segment. Wherein, when the displaying area of the touch panel receives an external force, a first conducting wire corresponding to the position designated by the external force is electrically coupled to a reference potential.
摘要:
A method for mitigating pooling mura on LCD apparatus and a LCD apparatus are provided. The method is adapted for a LCD apparatus having a plurality of pixels. The LCD apparatus is for displaying frames according to a received original display data, and each of at least a part of the pixels comprises two pixel electrodes to drive a plurality of liquid crystal molecules between the two pixel electrodes. The method comprises changing a corresponding portion of the original display data so as to rotate at least a part of the liquid crystal molecules between the two pixel electrodes of the pressed pixel toward a natural angle; and maintaining another corresponding portion of the original display data. The natural angle is a finally-presented tilt angle of the liquid crystal molecules between the corresponding two pixel electrodes having substantially no potential difference therebetween.
摘要:
A touch panel and methods for manufacturing the same is provided. The method for manufacturing a touch panel includes providing a substrate and forming a photospacer layer on the substrate. Subsequently, a single lithography process is performed to the photospacer layer to define a main spacer and a sensor spacer. After forming a conductive layer on the main spacers and sensor spacers, a part of the conductive layer is removed to expose a top part and a part of a upper side of the main spacer. Accordingly, the conductive layer on the top part of the main spacer can be completely removed. In addition, the aperture ratio loss due to over-etching the conductive layer on the color filter can be prevented by the conductive layer remained on a lower side of the main spacer.