摘要:
A fuel cell stack includes an endplate assembly of a fuel cell system which includes a structural endplate having a first exterior surface and a first interior surface located on an opposite side of the endplate relative to the first exterior surface. An insulator plate has a second exterior surface contacting the first interior surface of the structural endplate and second interior surface on an opposite side of the insulator plate relative to the second exterior surface. A third plate has a third exterior surface contacting the second interior surface and a third interior surface on an opposite side of the third plate relative to the insulator plate. The third interior surface and third exterior surface are substantially flat such that third interior surface and the third exterior surface are about parallel to each other. The second interior surface and the third exterior surface contact each other substantially continuously in a longitudinal direction and a lateral direction such that the second interior surface and the third exterior surface are flat and substantially parallel to each other. The second exterior surface is contoured such that the second exterior surface is not flat and is substantially non-parallel relative to the third interior surface.
摘要:
A method for operating a fuel cell system includes electrically coupling a fuel cell stack to an energy storage device and an electrical demand by a load device. A controller is coupled to the fuel cell stack, the energy storage device, and the load device via a communications connection. The controller obtains information relative to an operation of at least one of the fuel cell stack and the energy storage device and the controller controls an operation of the load device based on the information.
摘要:
A method for operating a fuel cell system includes electrically coupling a fuel cell stack to an energy storage device and an electrical demand by a load device. A controller is coupled to the fuel cell stack, the energy storage device, and the load device via a communications connection. The controller obtains information relative to an operation of at least one of the fuel cell stack and the energy storage device and the controller controls an operation of the load device based on the information.
摘要:
A method for operating a fuel cell system includes electrically coupling the fuel cell stack to an energy storage device and an electrical demand by a load device at a substantially constant voltage. A controller controls an amount of an oxidant supply to the fuel cell stack based on the demand by the load device.
摘要:
A technique includes lowering a temperature of a cathode exhaust flow from an electrochemical cell to produce a second flow and routing the second flow to a contaminant trap.
摘要:
A fuel cell-based system includes an electromechanical pressure relief system to prevent an overpressure condition from damaging the anode circuit of a fuel cell stack or creating a hazardous environment. Upon detection of a fuel flow pressure in a fuel path between a fuel source and the fuel cell stack, the pressure relief system isolates the anode circuit from the fuel path, vents the fuel flow, and shuts down the fuel cell system.
摘要:
A system includes a fuel cell stack, a power communication path, a first controller and a second controller. The fuel cell stack generates electrical power, and the power communication path is coupled between the fuel cell stack and a load of the system to communicate the electrical power to the load. The power communication path includes a switch, which is operable to selectively couple the fuel cell stack to the load and isolate the fuel cell stack from the load. The first controller has a first response time to control the fuel cell stack and control the power communication path. The second controller has a second response time, which is significantly less than the first response time to monitor the power communication path for a fault condition and take corrective action in response to detecting the fault condition.
摘要:
A technique that is usable with a fuel cell includes generating a humidified reactant flow. The technique includes measuring a rate of condensate production from the reactant flow and controlling the generation of the humidified reactant flow in response to the measured rate of condensate production.
摘要:
A cogeneration fuel cell system and associated methods of operation are provided that accommodate a demand for heat as well as a demand for electric power. The system is operated among various modes to balance heat and power demand signals. In general, a fuel cell system is coupled to a power sink and a heat sink, and a controller is adapted to respond to data signals from the power sink and the heat sink. As examples, such data signals from the heat sink may include a temperature indication or a heat demand signal (such as from a thermostat), and such data signals from the power sink may include a voltage or current measurement, an electrical power demand signal, or an electrical load.