Abstract:
A drive gear for a generally cylindrical imaging component. The drive gear includes a body for engaging the generally cylindrical imaging component; a cylindrical shaft attached to the body, the cylindrical shaft having an end surface; and three prongs extending longitudinally outward from the end surface.
Abstract:
Electronic systems, such as printing systems, often use components that have a memory. The integral memory can be used to store information about the component. In some printing systems this memory includes storing a portion that stores a value indicative of an amount of a consumable that has been used. Discloses is a method and system for updating a memory that is integral to a component within a printing system. The value stored in the memory can be read to determine an amount of a consumable used. Alternatively, when a specific value is stored in the memory the printing system can deactivate the component.
Abstract:
A method of cleaning and coating a used organic photoconductive drum is disclosed. Using this method remanufacturers can reliably reuse certain used organic photoconductive drums which could not be reused without this method. The method comprises providing a used organic photoconductive drum, cleaning the surface of the used organic photoconductive drum, applying a new surface layer comprising a non-volatile non-polar dielectric fluid such as a silicone oil with a viscosity of less than 200 cSt at 40 degrees Celsius. The resulting liquid surface on the used organic photoconductive drum provides wear resistance, and improved electrical characteristics allowing the used organic photoconductive drum to be used at least a second time.
Abstract:
A cartridge chip for use with a first type of imaging cartridge and a second type of imaging cartridge comprises a controller and a resistive element connected between the controller and a reference potential, the cartridge chip adapted for operation in a first mode of operation compatible with the first type of imaging cartridge when the controller detects the reference potential through the resistive element, the cartridge chip adapted for operation in a second mode of operation compatible with the second type of imaging cartridge when the controller cannot detect the reference potential through the resistive element.
Abstract:
Systems and methods of remanufacturing an imaging cartridge include providing the imaging cartridge comprising a developer material supplying roller, a developer roller, a developer blade which regulates a layer of thickness of the developer material on the outer surface of the developer roller, the developer blade held in a first position to exert a first pressure on the outer surface of the developer roller, providing a replacement developer material having a set of characteristics, and adjusting the position of the developer blade to a second position to exert a second pressure on the outer surface of the developer roller, the second position of the developer blade selected to function with the replacement developer material having the set of characteristics.
Abstract:
Systems and methods of remanufacturing an imaging cartridge including the replacement a rotatable member, such as an organic photo conductor (OPC) drum or toner adder roller, for example, in the imaging cartridge without detaching the rotatable member retaining elements, such as end caps, for example, and installing a replacement rotatable element without disturbing the rotatable member retaining elements end caps.
Abstract:
A method of modifying an imaging cartridge detachably mountable to an imaging apparatus, the imaging cartridge comprising a cartridge chip, the method including detaching the cartridge chip from the imaging cartridge, the cartridge chip comprising a light emitting device adapted for emitting light in the visible spectrum; and attaching a replacement cartridge chip to the imaging cartridge, the replacement cartridge chip comprising a light emitting device adapted for emitting light outside the visible spectrum.
Abstract:
Techniques for attaching a replacement chip to an imaging cartridge are described. a method of replacing a component of an imaging cartridge includes: providing the imaging cartridge including a chip and a chip holding structure holding the chip, the chip holding structure including a left upper flange, a right upper flange, a rear retaining member, bottom supporting rails, a left forward retaining element extending from the left upper flange, and a right forward retaining element extending from the right upper flange; removing at least a portion of the left forward retaining element and the right forward retaining element to form a modified chip holding structure; removing the chip from the cartridge; installing a replacement chip in the modified chip holding structure; and attaching the replacement chip to the imaging cartridge.
Abstract:
An ink jet remanufacturing chip verifier for new ink jet chips attached to remanufactured ink jet cartridges includes a controller for verifying during the process of remanufacturing the ink jet cartridges: if the new ink jet chips attached to the remanufactured ink jet cartridges are new ink jet chips, if the new ink jet chips attached to the remanufactured ink jet cartridges were manufactured by a predetermined manufacturer of new ink jet chips, if the new ink jet chips attached to the remanufactured ink jet cartridges are functional, and if the new ink jet chips attached to the remanufacture ink jet cartridges are a predetermined type of new ink jet chip; the controller for rejecting during the process of remanufacturing the ink jet cartridges: ink jet chips attached to remanufactured ink jet cartridges which have been previously used, ink jet chips attached to remanufactured ink jet cartridges which produced by manufacturers other than the predetermined manufacturer of inkjet chips, inkjet chips attached to remanufactured inkjet cartridges which are not functional, inkjet chips attached to remanufactured inkjet cartridges which are not a predetermined type of new inkjet chips; and a user interface for communicating the verification or rejection of the new ink jet chips from the controller during the process of remanufacturing.
Abstract:
A universal cartridge chip for use with an imaging process cartridge installed in an imaging device is disclosed. The universal cartridge chip includes a memory storing imaging process cartridge data. The universal cartridge chip may be installed on the imaging process cartridge in a first orientation or a second orientation. If the cartridge chip is installed in a first orientation, the cartridge chip operates in a first mode. If the cartridge chip is installed in a second orientation the cartridge chip operates in a second mode.