Abstract:
An optical network contains dispersion compensation modules with Fiber Bragg Gratings. A photo detector behind the Fiber Bragg Grating detects the not reflected rest of the gratings input signal and therefore the dispersion compensation modules input signal. This information is used to reduce the expenditure and to avoid errors of configuration or administration of the dispersion compensating subsystem of the optical network.
Abstract:
A received optical signal is coherently demodulated and converted into orthogonal x-polarization samples, and y-polarization samples. These samples are converted into signal x-samples and signal y-samples by an FIR butterfly filter. Correction values are calculated in an error calculating circuit of a control unit and added to filter transfer functions derived by a standard algorithm to determine corrected filter coefficients. Degenerate convergences calculating the transfer functions are avoided.
Abstract:
A method for data processing in an optical network includes providing at least one main wavelength and processing a subcarrier modulation for the at least one main wavelength, wherein a portion of the subcarrier modulated signal is suppressed. An optical network component and a communication system having such an optical network component are also provided.
Abstract:
A wavelength division multiplexer terminal with a multiplexer arrangement with a first switching matrix, and a demultiplexer arrangement with a second switching matrix allows flexibility for connection transceivers to ports of the wavelength division multiplexer and wavelength division demultiplexer respectively. Optical monitoring receivers are connected upstream the wavelength division multiplexer and downstream the wavelength division demultiplexer for managing and supervising connections.
Abstract:
A Raman pumping device (10) for amplifying a data optical signal in a fiber optic transmission system, comprising first and second ports (12a, 12b) through which the data optical signal may respectively enter and exit the Raman pumping device (10), a Raman pump source (14) for generating a Raman pump signal, and at least one combiner (16) for combining the Raman pump signal with the data optical signal. The Raman pumping device (10) allows for selectively combining the Raman pump signal generated by the same Raman pump source (14), or at least parts of the same Raman pump source (14) codirectionally or counterdirectionally with the data optical signal.
Abstract:
A set of media channel (MCh) widths is determined for an optical network. Based on a topology of the network, a first set of original MCh widths are computed for tentative use in the optical network, the first set of original MCh widths defining a target spectral efficiency. A reduced set of new MCh widths are generated from the first set of MCh widths by respectively mapping each of the original MCh widths of the first set of original MCh widths to a corresponding, or respective, new MCh width. An optimization algorithm is used in an example embodiment to facilitate the mapping.
Abstract:
A wavelength selective switching device comprises a plurality of input paths for receiving optical signals, a plurality of output paths for emitting the optical signals, and a switching unit for selectively directing the optical signals from the input paths to the output paths. The switching unit comprises a reflective area adapted to be concurrently illuminated by a first optical signal from a first input path among the plurality of input paths, and by a second optical signal from a second input path among the plurality of input paths, the second input path being different from the first input path, and to concurrently direct the first optical signal to a first output path among the plurality of output paths and the second optical signal to a second output path among the plurality of output paths, the second output path being different from the first output path. Said first output path and said second output path are spatially separated by said first input path and said second input path, or vice-versa.
Abstract:
A method of assigning performance indicators to objects of a network employing a computation to assign performance indicators to said objects of said network such that a sum of said performance indicators of objects along a given path in said network in relation to a first threshold value indicates whether said path fulfils a predetermined criterion, and/or indicates whether said path does not fulfil said predetermined criterion.A method of evaluating a performance of a path in a network based on the performance indicators involves the steps of calculating a sum of performance indicators for said objects along said path and evaluating a performance of said path by comparing said sum against a first threshold value.
Abstract:
A cable clamp for clamping a cable with respect to a through hole of a solid object is presented. The cable clamp includes first and second elements (102, 103) and retainer devices (105) for keeping the first and second elements with respect to each other so that the cable gets clamped between the first and second elements and the cable clamp gets locked to the edges of the through hole with the aid of first claws extending over the edges of the through hole on a first side of the solid object and with the aid of second claws capable of extending over the edges of the through hole on the second side of the solid object. The cable clamp can be inserted into the through hole when the first and second elements are tilted with respect to each other so that the first claws are nearer to each other.
Abstract:
A method and a device for processing data in a communication network, wherein a first node is served by a second node and communicates with a third node. The first node informs a fourth node to process data destined for the third node. The second node, the first node and the fourth node are connected via a transport network that is capable of a point-to-multipoint connection.