Abstract:
A self-cleaning sump for an agricultural harvester may include a collection chamber defining a top end and a bottom end. The self-cleaning sump may also include a sump door positioned at the bottom end of the collection chamber, with the sump door being movable between an opened position and a closed position. Additionally, the self-cleaning sump may include a cleaning device movable within the collection chamber between a raised position and a lowered position and an actuator coupled to the cleaning device. The actuator may be configured to actuate the cleaning device between the raised and lowered positions independent of the sump door. When the actuator is activated, the cleaning device may be configured to contact collected material contained within the collection chamber as the cleaning device is moved within the collection chamber between the top and bottom ends of the chamber.
Abstract:
A harvest weighing mechanism utilizes a variable speed conveyor comprised of evenly spaced solid rods such that marketable product is suspended on the rods while small foreign material falls between the rods. The product moves at the same velocity as the conveyor until discharged and directed into an impact plate attached to an impact sensor. As the product collides with the impact plate the resultant deflection of the impact plate is converted to an electronic signal which is sent to a control box which uses an algorithm to convert radial velocity to linear velocity and through laws of energy conservation determines the weight of the product required to cause the deflection measured by the impact sensor.
Abstract:
A chopper for receiving the straw and/or chaff from a combine harvester includes a housing with a chopping rotor to transport the materials though a discharge opening onto a tailboard construction with downwardly facing guide surface and fins for spreading of the crop materials. A rotary spreader has a plurality of fan members with blades rotatable for discharge to a respective side of the rotary spreader. An arrangement is operable so that in a first mode the crop material is spread wholly by the tailboard and in a second mode the crop material is spread at least mainly by the rotary spreader. In the second mode the tailboard remains position above the rotary spreader which is therefore located underneath a guide surface with fins of the guide surface facing downwardly adjacent the blades. The movement to the second ode is provided by the rotary spreader being moved forwardly and downwardly.
Abstract:
A cutting longitudinal swaths grain harvesting and baling combine, includes a grain cutting and conveying system, a threshing and separation system, a grain cleaning apparatus, a grain collection and holding system, a straw compression and baling apparatus, a chassis travelling system, and a driving system; when the combine is harvesting grain in fields, the stalks are cut and conveyed to the threshing and separation system by the grain cutting and conveying system; the threshed and separated straw is compressed and baled by the straw compression and baling apparatus; the threshed and separated grain is cleaned by the grain cleaning apparatus; and the cleaned grain is conveyed by the grain collection and holding system to a grain storage bin. The combine can achieve harvesting of grain such as rice and wheat as well as compression and baling of threshed straw, having advantages of high working efficiency, stable performance, a simple process, and being time and labor saving.
Abstract:
A helical auger flight has an inner edge, an outer edge, an inner face, an outer face, and a leading extremity that includes a prominence and a leading edge that extends from the outer edge to the prominence. The prominence extends outward from the leading edge of the leading extremity to an outer end having an upturned jut. A wear plate is releasably connected to the inner face of the helical auger flight. The wear plate extends from the outer edge of the helical auger flight to the prominence. A front extremity of the wear plate extends forwardly of the leading edge of the helical auger flight so as to be in a shielding relationship with respect to the leading edge of the helical auger flight, and a nose of the front extremity of the wear plated is seated in direct contact against a contact surface of the jut.
Abstract:
An inclined conveyor for a combine harvester has two drive elements which define a conveying direction and revolve in a conveying duct. Conveying duct is divided into an overshot return duct and an undershot conveying duct by a separating element situated between the upper run and the lower run of the drive element. Drive element is interconnected by carriers situated transversely with respect to conveying direction that convey harvested crop in undershot conveying duct. The difference in speed between the carrier bars and harvested crop stream is eliminated, and at least reduced, by additional acceleration of harvested crop stream. Carrier bars serve as carriers, and as acceleration elements for the harvested crop. That is because the cross section of each of the carrier bars viewed in conveying direction, occupies at least 30% of the smallest internal cross section of undershot conveying duct.
Abstract:
An assembly for rotating a chain or toothed belt includes a shaft and a sprocket rotatably mounted on the shaft. The sprocket includes a plurality of teeth configured to engage the chain or toothed belt. The assembly further includes a shield assembly covering at least a portion of the sprocket. The shield assembly has an interior groove formed therein defining an enclosed interior space. Each of the teeth of the sprocket rotate through the enclosed interior space during a full rotation of the sprocket.
Abstract:
A feederhouse for a combine harvester comprises an endless conveyor having at least two traction means made of inherently flexible material circulating about the deflection rollers and offset from one another in the axial direction of the deflection rollers, between which conveying strips extend. The inner sides of the traction conveying strips are furnished with cams made of inherently flexible material. Anchor plates are embedded in each of the cams. A first fastener having a first head recessed within the individual cam extends through individual cams, through individual anchor plates and through individual conveying strips. The anchor plate comprises two non-circular openings, wherein the first fastener and the second fastener each have non-cylindrical outer circumferential surfaces received within the non-circular openings to inhibit rotation of each of the first fastener and the second fastener relative to the anchor plate.
Abstract:
Separably-driven rotor portions for a combine harvester and a method for threshing grain using separably-driven rotor portions are provided. The combine harvester is moved through harvest material comprising grain material and material-other-than-grain (“MOG”). The grain material is separated from the MOG using multiple processing areas. The auger portion may be stopped or rotated at a slower speed with respect to rotation of the threshing portion to simulate the gathering of a large amount of crop material even when small plots are involved, thereby providing the benefits of large-plot harvesting to small-plot applications.