Abstract:
Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Nozzles associated with these devices, systems, and methods include a combination of materials suitable for withstanding prolonged exposure to high temperatures associated with certain liquid metals while facilitating efficient delivery of current to produce magnetohydrodynamic forces controllable over a range of frequencies associated with commercially viable three-dimensional fabrication.
Abstract:
Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. The magnetohydrodynamic force can be pulsed to eject droplets of the liquid metal to provide control over accuracy of the object being fabricated. The pulsations can be applied in fluid chambers having high resonance frequencies such that droplet ejection can be effectively controlled over a wide range of frequencies, including high frequencies suitable for liquid metal ejection at rates suitable for commercially viable three-dimensional fabrication.
Abstract:
A printer fabricates an object from a computerized model using a fused filament fabrication process and a build material. One or more energy directors such as ridges are formed in an exposed surface of the deposited build material to provide regions of high, localized contact force that can improve interlayer bonding between successive layers of the build material. An ultrasonic vibrator can also usefully be incorporated into the printer to apply additional energy along these energy directors during deposition of a subsequent layer.
Abstract:
Devices, systems, and methods are directed to separating sediment from liquid metal ejected, through pneumatic force, from a nozzle moving along a controlled three-dimensional pattern to fabricate a three-dimensional object. The separation of the sediment from the liquid metal can reduce the likelihood that the nozzle will become clogged or otherwise degraded during fabrication of the three-dimensional object or over the course of fabrication of multiple objects. Accordingly, the separation of the sediment from the liquid metal can facilitate, for example, the use of pneumatic ejection of liquid metal for high volume production of parts.
Abstract:
Devices, systems, and methods are directed to adjusting a pneumatic circuit associated with pneumatic ejection of liquid metal from a nozzle as the nozzle moves along a controlled three-dimensional pattern to fabricate a three-dimensional object. The adjustment of the pneumatic circuit can facilitate adjusting a pressure profile within the nozzle as pressurized gas moves through the nozzle to eject, through pneumatic force, liquid metal from the nozzle. Through adjustment of the pneumatic circuit, characteristics of the liquid metal (e.g., size, shape, and flow rate) can be controlled to facilitate control over fabrication of the three-dimensional object.
Abstract:
Devices, systems, and methods are directed to the pneumatic ejection of liquid metal from a nozzle moving along a controlled three-dimensional pattern to fabricate a three-dimensional object through additive manufacturing. The metal is movable into the nozzle as a valve is actuated to control movement of pressurized gas into the nozzle. Such movement of metal into the valve as pressurized gas is being moved into the nozzle to create an ejection force on liquid metal in the nozzle can reduce or eliminate the need to replenish a supply of the metal in the nozzle and, therefore can facilitate continuous or substantially continuous liquid metal ejection for the fabrication of parts.
Abstract:
Provided is a metal ball fabricating apparatus for fabricating a metal ball by melting a material. The metal ball fabricating apparatus includes: a fabricating unit configured to fabricate a metal ball; and a collecting unit configured to collect the metal ball. The fabricating unit includes: a chamber configured to receive and store a material; a heating unit configured to apply heat to melt the material in the chamber; an orifice disposed at a lower portion of the chamber to which a metal ball droplet drops; a piston disposed over the orifice to generate a metal ball droplet; and a purifying system configured to remove a foreign substance from the material.
Abstract:
An atomizer includes a T-shaped chamber with tapered insides and an outlet which is in communication with the chamber. A first path is located in a center area in the chamber so as to introduce molten metal therein and two second paths are introduced into the chamber so as to send inert gas into the chamber. A separator is located in the chamber and located at an outlet end of the first path. A narrow passage is defined between an inside of the outlet and the separator. The impact of the inert gas and the molten metal atomizes the metal.
Abstract:
A process of producing a zinc or zinc alloy powder (4) for batteries which comprises dropping molten zinc or a molten zinc alloy to form a molten metal droplets stream (1) and striking an atomizing medium jet (3) emitted from a nozzle (2) against the molten metal stream (1) at right angles to atomize the molten zinc or the molten zinc alloy, wherein two or more the nozzles are arranged in parallel to each other, the orifice of each of the nozzles has a V-shaped, U-shaped, X-shaped or arc-shaped cross-section, the atomizing medium is air or an inert gas, two or more the molten metal streams have at least two different flow rates selected from a range 0.04 to 0.25 kg/sec, and two or more the atomizing medium jets have at least two different atomizing pressures selected from a range 4 to 9 kg/cm2.
Abstract translation:一种生产用于电池的锌或锌合金粉末(4)的方法,包括滴加熔融锌或熔融锌合金以形成熔融金属液滴流(1)并且撞击从喷嘴(2)发射的雾化介质射流 )对熔融金属流(1)成直角,以雾化熔融锌或熔融锌合金,其中两个或更多个喷嘴彼此平行地布置,每个喷嘴的孔具有V形, U形,X形或弧形横截面,雾化介质是空气或惰性气体,两个或更多个熔融金属流具有选自0.04至0.25kg / sec的至少两种不同流速, 并且两个或更多个雾化介质射流具有选自4至9kg / cm 2的至少两种不同的雾化压力。
Abstract:
A tablet formed by prealloys iron-aluminum produced from automized powders to be used as additive element in aluminum alloys, is manufactured by the method having the steps of obtaining a metallic alloy by fusion of iron and aluminum with the iron and aluminum added in an electric arc or induction furnace, automizing the melted alloy by transporting the melted alloy to an intermediary contsiner with an opening as a metal flux controlled by a valve located in the opening for controlling and proportionating a continuous flux and supplying a jet of water under pressure when the liquid metal drains to provide a atomization and to produce small droplets that cool in water, solidify and are deposited as a powder; reducing humidity of the powder; classifying the thusly produced material, and compacting a thin fraction of the material for obtaining tablets; a tablet.