PARTICLE AGGLOMERATION FOR ADDITIVE METAL MANUFACTURING

    公开(公告)号:US20210331237A1

    公开(公告)日:2021-10-28

    申请号:US16328276

    申请日:2017-08-31

    Abstract: Devices, systems, and methods are directed at spreading sequential layers of powder across a powder bed and applying energy to each layer to form a three-dimensional object. The powder can include granules including agglomerations of metallic particles to facilitate spreading the metallic particles in each layer. The energy can be directed to the powder to reflow the granules in each layer to bind the metallic particles in the layer to one another and to one or more adjacent layers to form the three-dimensional object. Thus, in general, the agglomeration of the metallic particles in the granules can overcome constraints associated with metallic particles that are of a size ordinarily unsuitable for flowing and/or a size that presents safety risks. By overcoming these constraints, the granules can improve formation of dense finished parts from a powder and can result in formation of unique microstructures in finished parts.

    AGGLOMERATED PARTICLE POWDER FOR ADDITIVE MANUFACTURING

    公开(公告)号:US20190060993A1

    公开(公告)日:2019-02-28

    申请号:US15692921

    申请日:2017-08-31

    Abstract: Devices, systems, and methods are directed at spreading sequential layers of powder across a powder bed and applying energy to each layer to form a three-dimensional object. The powder can include granules including agglomerations of metallic particles to facilitate spreading the metallic particles in each layer. The energy can be directed to the powder to reflow the granules in each layer to bind the metallic particles in the layer to one another and to one or more adjacent layers to form the three-dimensional object. Thus, in general, the agglomeration of the metallic particles in the granules can overcome constraints associated with metallic particles that are of a size ordinarily unsuitable for flowing and/or a size that presents safety risks. By overcoming these constraints, the granules can improve formation of dense finished parts from a powder and can result in formation of unique microstructures in finished parts.

Patent Agency Ranking