Abstract:
A method and a plant for processing problematic, organic, chemical wastes for the disposal thereof. The different types of waste are collected in separate portions and the liquid waste portions are pooled, and the resulting liquid mixture is left to separate into a number of fractions. Each viscous or solid waste portions is subjected to a compatibility test with a liquid fraction. The waste portions are admixed with an amount of a compatible liquid fraction, ensuring that a workable mixture is obtained. The different mixtures are gradually mixed and a mixed and workable buffer portion is obtained. The buffer portion or a portion thereof is subjected to grinding at a high shear. A pumpable, combustible dispersion is obtained, which can be incinerated without any risk of explosions.
Abstract:
The present invention relates to a method of improving the operation of a boiler plant in a chemical pulp mill. At least part of the black liquor flow of the chemical pulp mill is divided into several batches being substantially in a solid form, which are mechanically turned into substantially equal-sized pieces for deeding into the recovery boiler and for combustion taking place therein. Waste liquor batches may be stored prior to the combustion. The invention also relates to a system for carrying out the method.
Abstract:
A thermal dechlorinating apparatus for collected ash, having a vertically elongated cylindrical apparatus body, a collected ash inlet and a collected ash outlet which are provided on the apparatus body and spaced in a vertical direction thereof, an inlet port for heated air provided on the portion of the apparatus body between the inlet and the outlet, an exhaust gas outlet provided on the portion of the apparatus body above the collected ash inlet, a rotary shaft provided along the axial direction of the apparatus body, a screw provided on the rotary shaft, and heating means provided on the portion of the apparatus body between the collected ash inlet and the collected ash outlet. Heated air is led into the apparatus body through the heated air inlet port. A stirred fluidized layer is formed in the portion of the apparatus body above the heated air inlet port, and a moving layer is formed below the heated air inlet port. Combustibles in the collected ash are burned in the stirred fluidized layer, and partial or entire decomposition and removal of chlorine compounds are performed in the moving layer using the combustion heat generated by burning the combustibles.
Abstract:
The present invention provides a method of processing waste material and a blend stock which provides a suitable fuel and includes the steps of grinding the waste material in a tank containing the blend stock with the grinding being in at least part provided by the coaction between a rotating impeller and a stationary plate so that the degree to which the waste material is ground is controlled by controlling the spacing between the plate and the impeller.
Abstract:
A system for remediating soil containing contaminants. The system comprises a rotary volatilizer, a thermal dust conductor, a soil cooler, a separator and an afterburner. The rotary volatilizer includes a rotatable, counterflow volatilizer drum with a drying zone, a heating zone and a burn zone. The burn zone of the volatilizer has an outer shell and a stainless steel inner liner supported by spring brackets within the outer shell. A separator is provided to receive exhaust gases from the volatilizer and the soil cooler and to remove dust from the exhaust gases. Dust from the separator and hot soil from the volatilizer is introduced into the thermal dust conductor. Hot gases from the thermal dust conductor are returned to the volatilizer to preheat combustion air for the volatilizer and to incinerate contaminants in the returned gases. Soil is transferred from the thermal dust conductor to the soil cooler, where water injection cools the remediated soil and adds moisture to the soil. The cool remediated soil is conveyed from the soil cooler to a load out hopper.
Abstract:
An apparatus for removing viscous material from barrels includes a conventional drum dumper, an auger formed of a double helix of metal ribbon, a motor for rotating the auger, and a carriage assembly for supporting the motor and auger and advancing the auger into and out of an inverted barrel. As the auger is advanced into the open end of an inverted barrel, the motor rotates the auger to insert the double helix into the viscous material and urge the viscous material rearwardly out of the open barrel end. The carriage assembly includes a carriage which supports a central shaft of the auger and the auger motor, and four guide rails which constrain the movement of the carriage to rectilinear motion. The tolerances between the carriage assembly and rails are such that the auger can skew slightly relative to the direction of travel so that the auger can negotiate around a side bung formed on the barrel, and yet provide a relatively close tolerance between the outer periphery of the auger and the inner surface of the barrel. Also, the leading edge of the auger includes cross bars provided with adjustable and/or removable teeth for digging into the viscous material, and the shaft includes a steam supply system for projecting jets of steam and/or other fluids from the sides and ends of the auger to loosen the viscous material. Limits of forward and rearward travel of the frame are controlled by a programmable logic controller.
Abstract:
The present invention provides methods for the reduction and recycling of papermaking sludge. Papermaking sludge is incinerated in a rotary heater, typically a rotary cement kiln, asphalt dryer, or specially designed rotary kiln or incinerator. Aggregate may be combined with the sludge to provide better dispersion of the sludge within the heater, and to facilitate heat transfer. Once in operation, the heat of sludge combustion is added to the process heat, resulting in markedly reduced energy requirements. Papermaking sludge is typically fed continuously into said rotary heater while temperatures in the combustion zone are maintained in the range of approximately 800.degree. to 3500.degree. F. During incineration, mixing catalysts (typically casein or soy protein) and wood fibers are burned, while moisture is evaporated. The resulting product consists essentially of carbonate particles which are collected for subsequent use.
Abstract:
A transportable processing unit for producing a pumpable, essentially homogeneous admixed material suitable for use as substitute fuel or for thermal destruction by incineration, the processing unit including a closed mixing vessel mounted on a movable base member the vessel adapted to receive feedstock material from an adjacent on site holding facility through at least one entry port and to receive intermediate process material through at least one inlet port and a process material exit port as well as a mixing device located in the vessel interior. The processing unit of the present invention also has a conduit for conveying process material away from said mixing vessel, which is connected to the mixing vessel exit port, and at least one particle sizing device mounted on the moveable base member which has an inlet in fluid communication with a second end of the process material conveying conduit and at least one diverter outlet which is in fluid communication with the intermediate process material inlet port of the mixing vessel. The moveable base is preferably a transportable member such as a tractor trailer or a transportation skid.