Abstract:
A method of making a colorimeter colour standard, including determining print parameters required to achieve a desired colour for the colour standard, printing the desired colour on a colour-receiving face of a first transparent piece using the determined print parameters and permanently affixing the printed first piece to a second transparent piece such that the colour-receiving face of the first transparent piece and a joining face of the second transparent piece are positioned at the interface between the first transparent piece and the second transparent piece.
Abstract:
A microcomputer equally divides the circumference of a RGB circle into 6×n (n is an integer of 1 or more) parts, and calculates a RGB value of each divided color. (255, 0, 0) is stored as a reference RGB value of a reference color in a ROM in the microcomputer. The microcomputer 3 converts the reference RGB value depending on an angular difference on the RGB circle between a designated color whose RGB value is to be found and the reference color, and assumes the converted RGB value as a RGB value of the designated color.
Abstract:
The method is for identifying and selecting a color or a combination of colors. A color sphere (200) is provided that has a first color pocket (238) defined between a first horizontal disc (202) and a second horizontal disc (208) and vertical inserts (212c, 212b) extending between the first horizontal disc and the second horizontal disc. The first horizontal disc has a plurality of organized first spectrum of color cells and the second horizontal disc has a plurality of organized second spectrum of color cells. The first spectrum is gradually lighter than the second spectrum and gradually more gray from a peripheral surface (209) towards an axial opening (232a) of the first horizontal disc and an axial opening (232b) of the second horizontal discs. A first color cell (236) is identified in a first pocket (238).
Abstract:
The method is for identifying and selecting a color or a combination of colors. A color sphere (200) is provided that has a first color pocket (238) defined between a first horizontal disc (202) and a second horizontal disc (208) and vertical inserts (212c, 212b) extending between the first horizontal disc and the second horizontal disc. The first horizontal disc has a plurality of organized first spectrum of color cells and the second horizontal disc has a plurality of organized second spectrum of color cells. The first spectrum is gradually lighter than the second spectrum and gradually more gray from a peripheral surface (209) towards an axial opening (232a) of the first horizontal disc and an axial opening (232b) of the second horizontal discs. A first color cell (236) is identified in a first pocket (238).
Abstract:
The present invention concerns a system and method for calibration and adjustment of the pixel color values represented within a digital image of a sample by a transmission microscope. Furthermore the present invention is directed to providing sufficient color information in order to generate a color mapping matrix that allows for the creation of a synthetic image to depict the sample under a desired illumination. The system and method provides a solution that generates a destination-device independent image that is configurable to any calibrated display device.
Abstract:
A color sphere has a plurality of organized color cells. The color cells are gradually lighter from a bottom to a top. A first color cell is selected from the color sphere. Radial, horizontal peripheral, vertical peripheral directions are identified relative to the first color cell. The color cells of the sphere are organized so that they only match in the radial direction, horizontal peripheral direction and in the vertical peripheral direction. A second color cell is selected only when the second color cell is in selected direction.
Abstract:
A color matching and coordinating reference system for use by manufacturers and consumers of goods includes assigning a unique identification code for each of a plurality of colors. The identification code includes color family indicia, color value indicia, and color selector device indicia. Preferably, each color is assigned a unique color name as well. Manufacturers utilizing the system label or otherwise associate each good with the identification code for each color used therewith to assist the consumer in matching and coordinating colors. Color selector devices and tables can be used by the consumer or manufacturer in finding matching colors or coordinating/complimentary color combinations.
Abstract:
A person can create a desired color through use of a visual aid or tool. The aid or tool may include a plurality of color lines, provided on a medium, on which color can be blended. The plurality of color lines may include: (i) a primary set of color lines, each providing a corresponding primary color that is different than a primary color of another color line in the primary set, and (ii) a secondary set of lines, where each color line in the secondary set is for a corresponding secondary color. Each color line in the primary set includes a plurality of color formations, and each color formation may have a common range of hues that are different of hues of the other color lines in the primary set. The plurality of color formations of each color line are arranged from a highest intensity to a lowest intensity. Each color line in the secondary set includes a plurality of color formations for the corresponding secondary color. The plurality of colors for each color line in the primary set and in the secondary set are arranged from a lowest intensity to a highest intensity. One of the color lines may be identified as either containing the desired color or containing a first primary component of the desired color. Once identified, one of two actions may take place: adjacent color formations from a single color line may be mixed, or color formations from adjacent color lines of relatively equivalent intensity are mixed.
Abstract:
A color chart includes three or more concentric circles having three, six, twelve or more color areas. The second circle includes three areas aligned with and designated by that of the first circle and further includes three areas located between and formed by the three colors of the first circle. The third circle includes six areas of the second circle and further includes six areas located between and formed by the six areas of the second circle. A center includes a black triangle and a white triangle each having three angles directed to three basic colors respectively.
Abstract:
Visual inspection device for inspecting the finish on manufactured goods. A plurality of samples are joined together in a substantially flat, substantially disk-like shape for easy viewing. The device includes a viewing hole in the center so that the surface being inspected can be viewed both through the hole and on the outside of the device, thus making comparisons by eye more accurate. The device optionally includes radial slots so that multiple devices can be fastened together or a device can be fastened to another object.