Abstract:
A combustion air proving (CAP) system for a burner assembly having a burner for providing heated air to a location, a controller, and a back plate, where outside air is fed to the burner via a conduit. The CAP system is connected to an inlet of the system. An outlet of the system is connected to the burner via the back plate. A damper within the system is translatable between open and closed positions for allowing and blocking air flow, respectively. A sensor measures an air flow parameter of air flow to the burner. The sensor communicates with the controller, which shuts down the burner if the parameter measured by the sensor meets a predetermined threshold value. An assembly installer may test for proper sensor and controller functions by translating the damper to the closed position and blocking outside air flow.
Abstract:
A burner assembly for an oven appliance, the oven appliance defining a vertical direction, a lateral direction, and a transverse direction and including a cooking chamber, the burner assembly including a gas burner provided in the cooking chamber, the gas burner defining a clean air port, and a shutter housing attached to a first end of the gas burner, the shutter housing defining an air inlet in fluid communication with the clean air port, and wherein the air inlet is positioned below the clean air port along the vertical direction.
Abstract:
The present disclosure discloses a flamed-based vacuum generator, including a shell and a combustion assembly, where the shell has a cavity, the cavity being a space having at least one opening, and the combustion assembly includes a combustible object and an igniter, the igniter being configured to ignite the combustible object, the combustible object generating a flame in the cavity, and the flame extinguishing in the cavity. In the present disclosure, through in-depth study of the internal mechanism of vacuum generated by flame combustion, it is found that the extinguishing process of a flame is the key to the generation of vacuum, and a larger flame and more sufficient combustion indicate a higher vacuum pressure generated in the cavity after the flame is extinguished.