Abstract:
An apparatus and method comprising a cathode structure which can be a cylindrical filament coiled in a helix or which can be constructed of a ribbon or other suitable shape. The cathode structure can be heated by passage of an electrical current, or by other means such as bombardment with energetic electrons. Selected portions of the surface of the cathode structure have an altered property with respect to the non-selected portions of the surface. In one embodiment, the altered property is a curvature. In another embodiment, the altered property is a work function. By altering the property of the selected portions of the surface, the electron beam intensity is increased, and the width is decreased.
Abstract:
A vacuum tube optimization circuit can automatically ensuring that the preheating required for the thermionic effect to occur within the vacuum tubes within a vacuum tube device, has been sufficient to allow the vacuum tubes to reach their operating temperatures, before allowing signal voltage or current to be applied to their anodes, cathodes, and/or other thermionically-active components. This reduces the diffusion of component-specific surface material coatings onto the surfaces of other internal elements within the vacuum tube, functioning to extend the service life of the vacuum tubes.
Abstract:
A flat filament includes a first electron emission surface, a first current supply leg, a second current supply leg, a second electron emission surface disposed laterally of the first electron emission surface and connected to a first end region of the first electron emission surface, a third current supply leg, a third electron emission surface disposed laterally of the first electron emission surface, opposite from the second electron emission surface, and connected to a second end region of the first electron emission surface, and a fourth current supply leg.