Abstract:
The present invention provides a 3D display method, which comprises: obtaining an interference value of a display unit displaying at least one pair of images with parallax; adjusting the display unit based on the interference value; and the adjusted display unit displaying the at least one pair of images with parallax. The present invention also provides a 3D display device. Through the technical solution of the present invention, the crosstalk phenomenon during the 3D display process can be relieved to optimize the 3D display result.
Abstract:
The present invention provides a binocular camera resetting method and a binocular camera resetting apparatus, wherein the binocular camera resetting method comprises: obtaining a first image and a second image photographed by two cameras at the same time respectively after completing a rough adjustment of the two cameras; calculating a relative rotation angle between optical axes of the two cameras using a plurality of feature points of the first image acquired by one of the two cameras and the feature points of the second image acquired by the other one of the two cameras; controlling one of the two cameras to rotate the relative rotation angle to parallelize the optical axes of the rotated camera and the other camera; and adjusting a spaced distance between the two cameras to a preset distance.
Abstract:
A method is disclosed for a stereoscopic display system. The display system has a display panel containing an array of display units and a plurality of stereoscopic devices coupled to the display panel to affect three-dimensional (3D) display. The method includes receiving a 3D image to be displayed on the array of display units. The method also includes determining original display values for the display units and determining a coupling relationship between the display units and the stereoscopic devices. Further, the method includes determining a crosstalk condition based on the coupling relationship, and adjusting the original display values of display units based on the coupling relationship, the crosstalk condition, and the original display values of both the left display units and the right display units such that the crosstalk condition is cancelled. The method also includes displaying the 3D image using the adjusted display values of the display units.
Abstract:
A method is provided for a three-dimensional (3D) image processing system including a stereoscopic display device. The method includes providing a stereoscopic image and obtaining a parallax range of the stereoscopic image and a parallax range supported by the stereoscopic display device. The method also includes determining a parallax operation to adjust the parallax range of the stereoscopic image based on the relationship between the parallax range of the stereoscopic image and the parallax range supported by the stereoscopic display device. Further, the method includes determining an offset value and an offset direction of a horizontal coordinate of each pixel of the stereoscopic image, and shifting the horizontal coordinate of each pixel of the stereoscopic image by the offset value and in the offset direction.
Abstract:
A method is disclosed for a stereoscopic display system. The display system has a display panel containing an array of display units and a plurality of stereoscopic devices coupled to the display panel to affect three-dimensional (3D) display. The method includes receiving a 3D image to be displayed on the array of display units. The method also includes determining original display values for the display units and determining a coupling relationship between the display units and the stereoscopic devices. Further, the method includes determining a crosstalk condition based on the coupling relationship, and adjusting the original display values of display units based on the coupling relationship, the crosstalk condition, and the original display values of both the left display units and the right display units such that the crosstalk condition is cancelled. The method also includes displaying the 3D image using the adjusted display values of the display units.
Abstract:
A 3D display apparatus includes a display device, a liquid crystal panel, and a lens unit. The display device is configured to output polarized lights of one or more images with a first polarization direction. The liquid crystal panel is coupled to the display device and contains a plurality of pixel display areas to receive the polarized lights. The display areas can be individually controlled by corresponding active switches to a first state in which the first polarization direction is transformed into a second polarization direction or a second state in which the first polarization direction is maintained. Further, the lens unit is coupled to the liquid crystal panel and is configured to guide the polarized lights with the second polarization direction to pass through for 2D display and to guide polarized lights with the first polarization direction into predetermined transmitting directions for 3D display.
Abstract:
An exemplary tracing-type stereo display apparatus includes a tracing member, an index member, a sub-pixel array, and a stereo display member. The tracing member is configured for obtaining a space position of a viewer. The index member is configured for obtaining an index factor according to the space position and generating an index table according to the index factor. The sub-pixel array member configured for arraying sub-pixels according to the index table. The stereo display member configured for displaying the sub-pixels arrayed according to the index table. A tracing-type stereo display method is also provided in the present disclosure.
Abstract:
A three-dimensional (3D) display system is provided for displaying a 3D image including a first view image and a second view image to a viewer. The 3D display system includes an arrangement module, a processing module, and a displaying module. The arrangement module is configured to alternatingly arrange display units of the first view image and display units of the second view image on a display panel. The processing module is configured to obtain an information difference of a display unit of the second view image from the display units of the first view image, and re-calculate a pixel value of the display unit of the second view image. The displaying module is configured to display to the viewer the display unit of the second view image with the re-calculated pixel value via a light separation device.
Abstract:
A display device is provided. The display device includes a liquid crystal display (LCD) panel for displaying images, a first electrode layer, and a second electrode layer coupled to the first electrode layer. The display device also includes a first driving circuit configured to provide a first driving signal and a second driving circuit configured to provide a second driving signal. Further, the display device includes a coupling unit coupled to the first driving circuit and the second driving circuit and configured to couple the first driving signal and the second driving signal, and to provide the coupled signal of the first driving signal and second driving signal to both of the first electrode layer and the second electrode layer such that the first driving signal drives the LCD panel for displaying the images, and the second driving signal drives the LCD panel for being touch-sensitive. The display device also includes a signal separation unit coupled to at least one of the first electrode layer and the second electrode layer to receive a feedback signal indicating a capacitance change corresponding to a touch on the LCD panel.
Abstract:
A three-dimensional (3D) image processing method is provided. The method includes receiving from an image source a 3D image containing a plurality of images that are previously compressed, and storing pixel data of the received plurality of images. The method also includes determining that the plurality of images do not have a same number of pixel columns, determining at least one boundaries among the plurality of images, and determining a minimum number of pixel columns and a maximum number of pixel columns of the plurality of images. Further, the method includes adjusting any one of the plurality of images having a column number less than the maximum number such that each of the plurality of images has the maximum number of pixel columns, decompressing the plurality of images, and discarding from each of the decompressed plurality of images by a determined number of last columns, wherein the determined number is the difference between the maximum number and the minimum number.