Abstract:
Disclosed herein are embodiments of a classifier (100) for classification of particles according to their size and/or weight. Classifiers (100) disclosed herein may include a mixing chamber (120), and a separation chamber (110), where the separation chamber may be separable into parts. Classifiers (100) disclosed herein may include a fluidizing chamber (130). The separation chamber (110) may include a de-aeration chamber (151) and a launder (117).
Abstract:
A filter plate assembly [1] comprises a filter plate [100] having a recess [102], a radially-inwardly extending shelf portion [108] having a seat surface [101], and a feed eye aperture [110] extending through the shelf portion. An adapter ring [170] is placed within said recess [102]. The adapter ring [170] has a flange [172] and a barrel [179] extending from the flange [172]. The barrel [179] has an inner wall [180] and an outer wall [182], and is positioned within said aperture [110] such that the outer wall [182] of the barrel [179] is in close proximity with said aperture [110]. The flange [172] comprises an inner surface [173] which abuts the seat surface [101]. The filter plate assembly [1] further comprises a filter cloth assembly [160] comprising a filter cloth [168] having an aperture [168B], and a grommet [168A] fitted within the filter cloth aperture [168B]. The grommet [168A] is configured to align with the adapter ring [170], and comprises a collar [167] having an inner surface [167A] which is bonded or mechanically attached to a first side [188] of the filter cloth [168]. A second side [189] of the filter cloth [168] abuts a sealing surface [185] of the adapter ring [170].
Abstract:
Disclosed, is a drive (101) for a sedimentation tank (1000) comprising a main ring gear (160) operatively connected to a cage (150) via a web portion (152). A bearing transfer ring (170) is provided to the web portion (152) such that a gap (172) is provided between the bearing transfer ring (170) and the main ring gear (160). The bearing transfer ring (170) is connected to a first bearing race (144) which communicates with a second bearing race (142) that is fastened to a base portion (136) of the drive (101). Torque (T) is delivered to the cage (150) to turn a rake assembly (1002). The gap (172) provides clearance for deflections, distortions, or deformations of the main ring gear (160) caused by bending stresses (B) in the main ring gear (160) may. The bearing transfer ring (170) absorbs stresses imparted to the main ring gear (160) and prevents fasteners (188) connected to stiff bearing races (144) from shearing. Also disclosed is a retrofit kit for a sedimentation tank drive, a sedimentation tank (1000) having a drive (101) according to the above description, and a method of thickening/clarifying slurry (1008) utilizing a drive (101) according to the above description.
Abstract:
A method of leaching a copper bearing sulfide mineral slurry containing chalcopyrite is described. The method comprises the steps of providing a slurry having chalcopyrite particles therein, exposing the slurry to an acidic leach solution, and chemically leaching copper from the slurry into the acidic leach solution in the presence of microwave irradiation. The microwave irradiation of the slurry takes place under process conditions whereby crystalline pyrite may be formed in-situ on surfaces of the chalcopyrite particles. Crystalline pyrite may be formed on surfaces of the chalcopyrite particles from amorphous phase pyrite. Leached copper is recovered from said acidic leach solution. A device for more efficiently leaching a copper bearing sulfide mineral slurry containing chalcopyrite is also described herein.
Abstract:
A roller press having an improved edge wear assembly is disclosed. The roller press comprises a roller [200] having an axis [203]. The roller [200] comprises an outer surface [205] containing one or more wear inserts [280] and an annular abutment surface [207] proximate an end of the outer surface [205]. The annular abutment surface [207] extends generally transversely with respect to the outer surface [205] of the roller [200]. A plurality of wear components [211] extend from the abutment surface [207] in a direction generally parallel to the axis [203] of the roller [200], wherein at least two of the wear components [211] are circumferentially interlocked with one another so as to resist axial and/or radial pull-off forces as material flows between other wear inserts [280] located on the roller [200]. Fasteners [230] are received by receiving portions [215] in and secure the wear components [211] to the abutment surface [207] of the roller [200].
Abstract:
A roller press comprises a roller [100] having: a roller edge [110] formed by the intersection of a roller end [126] and an outer surface [128], an edge wear component [150] provided at said roller edge [110], and a mounting insert [160] provided within a mounting insert pocket [129] located inland of said roller end [126] and spaced from said roller edge [110]. A fastener [140] extends between the edge wear component [150] and the mounting insert [160] to keep the edge wear component [150] attached to the roller [100]. The fastener [140] threadedly engages female threads [164] provided within the mounting insert [160]. Also disclosed, is an edge protection system and method of mounting an edge wear component [150] to a roller [100] in a roller press.
Abstract:
A flotation machine includes a wash water system that is connectable adjacent a tank to direct sprays of water into froth within a froth zone. Wash water panel assemblies of the system can be positioned adjacent the tank so that each of the wash water panel assemblies are moveable between an open position and a closed position. Each wash water panel assembly can include an outer panel body that at least partially defines a reservoir in which wash water is passable and a spray membrane positionable adjacent the outer panel body. The spray membrane can have a plurality of spray holes in fluid communication with the reservoir such that water is passable from the reservoir and through the spray membrane via the spray holes for spraying water into the froth in the froth zone.
Abstract:
A centrifuge (1) for separating intermixed particulate material of different specific gravity. The centrifuge (1) comprising a centrifuge bowl (10) having a plurality of annular recesses (19), a housing (30), an inlet (17), and means for rotating the centrifuge bowl (10) about the central axis (15). An annular cavity (31) is defined between the housing (30) and the centrifuge bowl (10). The annular cavity (31) is fluidly connected to the plurality of annular recesses (19) on the inner surface of the centrifuge bowl by a number of perforations in the centrifuge bowl wall (12). The annular cavity (19) has a fluid inlet to provide fluid into the annular cavity. The annular cavity (19) has an accumulated cross-sectional flow area (Aflow) at two different heights in the annular cavity that differs by at least a factor 10.
Abstract:
A bucket wheel chute assembly comprising a frame and a bucket wheel chute. The bucket wheel chute comprising a plurality of wear plates. The bucket wheel chute comprising a first chute section and a second chute section and is detachably attached to the frame. At least one of the first chute section and second chute section is detachably attached to the frame by a first movable attachment means.
Abstract:
A conveyor for pulverized material comprises in combination a conduit, a screw rotatably mounted within the conduit having an material inlet end and material discharge end, means for rotating the screw, means for supplying material to the screw at the material inlet end, whereby the material will be compacted as it is advanced by the screw to the material discharge end, and means for admitting a gas under pressure to the compacted material at the material discharge end to render it fluent. In a portion of the screw a material seal is formed by the compacted material being advanced by the screw, wherein there are material pockets formed between adjacent screw flights, wherein the pocket size volume is at its maximum nearest the material inlet end and at its minimum nearest the material outlet end, with at least twice as many pockets of minimum size as of maximum size.