Abstract:
Provided are magnetic tunnel junction structures having bended tips at both ends thereof, magnetic RAM cells employing the same and photo masks used in formation thereof. The magnetic tunnel junction structures have a pinned layer pattern, a tunneling insulation layer pattern and a free layer pattern, which are stacked on an integrated circuit substrate. At least the free layer pattern has a main body as well as first and second bended tips each protruded from both ends of the main body when viewed from a plan view.
Abstract:
Methods of forming a magnetic memory device include oxidizing a top magnetic layer using a conductive capping pattern as a mask. An etch selectivity between an oxidized portion of the top magnetic layer and a tunnel barrier layer may be relatively high. Using the tunnel barrier layer as an etch-stop layer, the oxidized portion of the top magnetic layer is selectively removed to form a top magnetic pattern, and to expose at least a portion of opposite sidewalls of the top magnetic pattern and the tunnel barrier layer. The unoxidized portion of the top magnetic layer forms a top magnetic pattern.
Abstract:
Provided is a method of programming a resistance variable memory device. The resistance variable memory device includes a memory cell having multi states and a write driver outputting a program pulse for programming the memory cell into one of the multi states. The method of programming the resistance variable memory device includes applying a first program pulse to the resistance variable memory device and applying a second program pulse to a memory cell when the memory cell is programmed into an intermediate state. When the first program pulse is a reset pulse, the reset pulse is an over program pulse, that is, an over reset pulse. Therefore, the resistance variable memory device can secure a sufficient read margin as well as improve a resistance drift margin.
Abstract:
The present invention relates to a method of forming a phase changeable structure wherein an upper electrode is formed on a phase changeable layer. A material including fluorine can be provided to the phase changeable layer and the upper electrode. The phase changeable layer can be etched to form a phase changeable pattern. Oxygen plasma or water vapor plasma can then be provided to the upper electrode and the phase changeable pattern.
Abstract:
The present invention relates to a phase changeable structure having decreased amounts of defects and a method of forming the phase changeable structure. A stacked composite is first formed by (i) forming a phase changeable layer including a chalcogenide is formed on a lower electrode, (ii) forming an etch stop layer having a first etch rate with respect to a first etching material including chlorine on the phase changeable layer, and (iii) forming a conductive layer having a second etch rate with respect to the first etching material on the etch stop layer. The conductive layer of the stacked composite is then etched using the first etching material to form an upper electrode. The etch stop layer and the phase changeable layer are then etched using a second etching material that is substantially flee of chlorine to form an etch stop pattern and a phase changeable pattern, respectively.
Abstract:
Methods of forming a magnetic memory device include oxidizing a top magnetic layer using a conductive capping pattern as a mask. An etch selectivity between an oxidized portion of the top magnetic layer and a tunnel barrier layer may be relatively high. Using the tunnel barrier layer as an etch-stop layer, the oxidized portion of the top magnetic layer is selectively removed to form a top magnetic pattern, and to expose at least a portion of opposite sidewalls of the top magnetic pattern and the tunnel barrier layer. The unoxidized portion of the top magnetic layer forms a top magnetic pattern.