Abstract:
This disclosure provides systems, methods and apparatus for managing a capacitor system. In one aspect, an energy storage system includes a capacitor system, a charging circuit, and a controller. The capacitor system includes one or more capacitors. The charging circuit is configured to charge the capacitor system to a first target voltage. The controller is configured to detect a first condition and is programmed, in response to the first condition, to instruct the charging circuit to charge the capacitor system to a second target voltage that is less than the first target voltage. The controller is programmed to provide a notification that the capacitor system is operating in a degraded state.
Abstract:
Methods for manufacturing intermittently coated dry electrodes for energy storage devices and energy storage devices including the intermittently coated dry electrodes are disclosed. In one embodiment, the method includes providing a metal layer and providing an electrochemically active free-standing film formed of a dry active material. The method also includes combining the electrochemically active free-standing film and the metal layer to form a combined layer. The method further includes removing a portion of the electrochemically active free-standing film from the combined layer so that the electrochemically active free-standing film is intermittently formed on the metal layer in a longitudinal direction of the metal layer.
Abstract:
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode. At least one of the electrodes can include an electrode film prepared by a dry process. The electrode film, the electrode and/or the separator can comprise a salt, improved porosity, increased density, be prelithiated, and/or a foam. Process and apparatuses used for fabricating the electrode and/or electrode film are also described.
Abstract:
Apparatuses and methods for forming an electrode film mixture are described. An apparatus for forming an electrode film mixture can have a first source including a solution comprising a polymer, for example, polytetrafluoroethylene and a critical or supercritical fluid, for example, supercritical carbon dioxide, a second source including a second component of the electrode film mixture, a mixer configured to receive the solution and the second component and to form a slurry comprising the solution and the second component. The apparatus can include a decompressor configured to receive the slurry and decompress the slurry to vaporize the critical or supercritical fluid and precipitate dry polymer.
Abstract:
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode, and an electrolyte where the electrolyte includes one or more additives and/or solvent components selected from vinylene carbonate (VC), vinyl ethylene carbonate (VEC), dimethylacetamide (DMAc), hydro fluorinated ether branched cyclic carbonate, a hydro fluorinated ether ethylene carbonate (HFEEC), hydro fluorinated ether (HFE), and fluorinated ethylene carbonate (FEC). The electrolyte may include a carbonate based solvent and one or more solvent components and/or one or more of vinylene carbonate (VC), vinyl ethylene carbonate (VEC), dimethylacetamide (DMAc), hydro fluorinated ether branched cyclic carbonate, a hydro fluorinated ether ethylene carbonate (HFEEC), hydro fluorinated ether (HFE), and fluorinated ethylene carbonate (FEC).
Abstract:
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode, where the anode and/or electrode includes an electrode film having a super-fibrillized binder material and carbon. The electrode film can have a reduced quantity of the binder material while maintaining desired mechanical and/or electrical properties. A process for fabricating the electrode film may include a fibrillization process using reduced speed and/or increased process pressure such that fibrillization of the binder material can be increased. The electrode film may include an electrical conductivity promoting additive to facilitate decreased equivalent series resistance performance. Increasing fibrillization of the binder material may facilitate formation of thinner electrode films, such as dry electrode films.
Abstract:
An energy storage device can include a cathode and an anode, where at least one of the cathode and the anode are made of a polytetrafluoroethylene (PTFE) composite binder material including PTFE and at least one of polyvinylidene fluoride (PVDF), a PVDF co-polymer, and poly(ethylene oxide) (PEO). The energy storage device can be a lithium ion battery, a lithium ion capacitor, and/or any other lithium based energy storage device. The PTFE composite binder material can have a ratio of about 1:1 of PTFE to a non-PTFE component, such a PVDF, PVDF co-polymer and/or PEO.
Abstract:
In one aspect, an embodiment of this invention comprises an energy storage device balancing apparatus. The energy storage device balancing apparatus comprises a balancing circuit and an alarm circuit. Both the balancing circuit and the alarm circuit are coupled to the energy storage device. The balancing circuit is configured to monitor a voltage of the energy storage cell and dissipate energy from the energy storage cell if the voltage is at or above a first reference voltage. The alarm circuit is configured to generate an alarm when the voltage of the energy storage cell is at or above a second reference voltage and dissipate energy from the energy storage cell when the voltage is at or above the second reference voltage.
Abstract:
In one aspect, an embodiment of this invention comprises an energy-storage module for storing energy for electrical consumption. The module comprises a plurality of energy-storage cells and a set of parallel walls configured to mount the plurality of energy-storage cells between the parallel walls and having a plurality of through-holes. The module also comprises a bus bar arrangement configured to electrically couple each of the plurality of energy-storage cells to a first terminal and a second terminal and a wire routing device configured to mate with a plurality of the through-holes and configured to receive one or more wires that electrically connect components of the energy storage module.
Abstract:
Provided herein are dry process electrode films, and energy storage devices incorporating the same, including a microparticulate non-fibrillizable binder having certain particle sizes. The electrode films exhibit improved mechanical and processing characteristics. Also provided are methods for processing such microparticulate non-fibrillizable electrode film binders, and for incorporating the microparticulate non-fibrillizable binders in electrode films.