Abstract:
A method for driving a pixel electrode disposed on a first substrate operates by providing a voltage corresponding to a displaying data to the pixel electrode and a control electrode, such that the pixel electrode and the control electrode are at a floating connection state; providing a first coupling voltage to a coupling electrode; and coupling a variation of a first coupling voltage to the control electrode via at least one coupling capacitor, such that an absolute value of a voltage difference between the control electrode and a common electrode substantially greater than an absolute value of a voltage difference between the pixel electrode and the common electrode, wherein the common electrode is disposed on a second substrate and the second substrate is corresponding to the first substrate.
Abstract:
A PSA LCD panel includes a plurality of pixel units. Each of the pixel units includes a first pixel electrode and a second pixel electrode separated from the first pixel electrode. Each of the first and second pixel electrodes has a pattern scattered from a center in such a manner to form four domains.
Abstract:
In a liquid crystal display panel, a pixel electrode includes at least a main electrode strip and a plurality of sub electrode branches. The sub electrode branches extend outwardly from two opposite edges of the main electrode strip. The main electrode strip includes at least a node-controlling portion, the controlling width of the node-controlling portion are different from a trunk width of the main electrode strip. Otherwise, a plurality of first sub electrode branches and a plurality of second sub electrode branches are extend outwardly from two opposite edges of the main electrode strip respectively. Relating to the position of the first sub electrode branches, the second sub electrode branches has a position-shift amount along the extending direction of the main electrode strip. The position-shift amount is smaller than the branch width of the first or second sub electrode branch.
Abstract:
A driving method with reducing image sticking effect is disclosed. The driving method includes applying a voltage on the data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect, and applying different asymmetric waveforms to different data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect.
Abstract:
In a liquid crystal display panel, a pixel electrode includes at least a main electrode strip and a plurality of sub electrode branches. The sub electrode branches extend outwardly from two opposite edges of the main electrode strip. The main electrode strip includes at least a node-controlling portion, the controlling width of the node-controlling portion are different from a trunk width of the main electrode strip. Otherwise, a plurality of first sub electrode branches and a plurality of second sub electrode branches are extend outwardly from two opposite edges of the main electrode strip respectively. Relating to the position of the first sub electrode branches, the second sub electrode branches has a position-shift amount along the extending direction of the main electrode strip. The position-shift amount is smaller than the branch width of the first or second sub electrode branch.
Abstract:
A liquid crystal display includes a light source for emitting light, a first substrate, a second substrate parallel to and facing the first substrate, and a plurality of pixel units formed between the first substrate and the second substrate. At least one pixel unit comprises a reflecting element disposed on the first substrate for reflecting light from the light source, and a photo-sensing element, formed on the second substrate, for outputting a sensing parameter based on light reflected from the reflecting member. Each reflecting element is extended out of the first substrate and faces to one of the plurality of photo-sensing elements. A position of the force applied on the first substrate is determined by detecting a variation of the sensing parameter outputted by the photo-sensing element.
Abstract:
A driving method with reducing image sticking effect is disclosed. The driving method includes applying a voltage on the data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect, and applying different asymmetric waveforms to different data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect.
Abstract:
An optical compensated bend (OCB) mode liquid crystal display (LCD) includes a pixel electrode, a color filter, a common electrode and a liquid crystal layer. The pixel electrode is formed on the first substrate of the OCB mode LCD. The color filter is formed on the second substrate of the OCB mode LCD. The common electrode is formed on the color filter. The liquid crystal layer is sandwiched between the first substrate and the second substrate. A step structure is formed on the second structure, so that the liquid crystal molecules in the liquid crystal layer are twisted into the bend state from the splay state uniformly and quickly.
Abstract:
An optical compensated bend (OCB) mode liquid crystal display (LCD) includes a pixel electrode, a color filter, a common electrode and a liquid crystal layer. The pixel electrode is formed on the first substrate of the OCB mode LCD. The color filter is formed on the second substrate of the OCB mode LCD. The common electrode is formed on the color filter. The liquid crystal layer is sandwiched between the first substrate and the second substrate. A step structure is formed on the second structure, so that the liquid crystal molecules in the liquid crystal layer are twisted into the bend state from the splay state uniformly and quickly.
Abstract:
A multi-domain vertical alignment (MVA) liquid crystal display panel includes an array substrate, a color filter (CF) substrate arranged in parallel to the array substrate, a plurality of bump patterns disposed on the CF substrate, and a plurality of transparent electrode patterns disposed on the array substrate. Each bump pattern includes a main bump corresponding to a pixel region, and at least one bump wing corresponding to a scan line or a data line. Each main bump includes a first protrusion connected to a side of the main bump. Each transparent electrode pattern includes a main slit. The transparent electrode pattern further includes a plurality of fine slits disposed in an inner side and in an outer side of the main slit. The fine slits disposed in the outer side of the main slit near the data line have different lengths.