Abstract:
A capacitor assembly that is capable of exhibiting good properties under hot conditions. The ability to perform under such conditions is due in part to the use of an intrinsically conductive polymer in the solid electrolyte that contains repeating units having the following formula (I): wherein, R is (CH2)a—O—(CH2)b; a is from 0 to 10; b is from 1 to 18; Z is an anion; and X is a cation. The resulting capacitor assembly may exhibit excellent electrical properties even when exposed to high temperatures.
Abstract:
A capacitor element for use in high voltage environments is provided. More particularly, the capacitor element contains an anode that includes a solid electrolyte that overlies an anode. The anode includes a sintered porous pellet and a dielectric layer formed on a surface of the pellet and within its pores. The present inventors have discovered that the ability to achieve such high voltages can be achieved through the use of a dielectric having a reduced degree of crystallinity.
Abstract:
A capacitor bank for use in a medical device is provided. Through selective control over the individual capacitors employed in the bank, a low ESR can be achieved without adversely impacting other properties of the resulting medical device. More particularly, at least one capacitor in the bank may contain a solid electrolytic capacitor element that includes an anode and a solid electrolyte overlying the anode. The anode includes an anodically oxidized, sintered porous pellet and the solid electrolyte includes a plurality of conductive polymer particles.
Abstract:
A capacitor assembly that comprises a housing, a capacitor element that is hermetically sealed within the housing, and a thermally conductive material that at least partially encapsulates the capacitor element is provided. The capacitor element includes a sintered anode body, a dielectric overlying the anode body, and a solid electrolyte overlying the dielectric. The thermally conductive material has a thermal conductivity of about 1 W/m-K or more as determined in accordance with ISO 22007-2:2014.
Abstract:
A capacitor assembly configured to effectively dissipate heat when exposed to a high ripple current is provided. The assembly includes a plurality of capacitor elements, each including an anode body and lead, a dielectric layer overlying the anode body, and a solid electrolyte. A metal cylindrical housing having a lid and base, where the lid has a diameter in an −x direction and the metal cylindrical housing has a height in a −z direction, defines an interior cavity within which the plurality of capacitor elements are arranged about a central axis running along the −z direction. The ratio of the diameter to the height of the base ranges from about 1.5 to about 20. Further, the metal cylindrical housing is hermetically sealed.
Abstract:
A capacitor whose electrical properties can be stable under a variety of different conditions is provided. The solid electrolyte of the capacitor is formed from a combination of an in situ polymerized conductive polymer and a hydroxy-functional nonionic polymer. One benefit of such an in situ polymerized conductive polymer is that it does not require the use of polymeric counterions (e.g., polystyrenesulfonic anion) to compensate for charge, as with conventional particle dispersions, which tend to result in ionic polarization and instable electrical properties, particularly at the low temperatures noted above. Further, it is believed that hydroxy-functional nonionic polymers can improve the degree of contact between the polymer and the surface of the internal dielectric, which unexpectedly increases the capacitance performance and reduces ESR.
Abstract:
An electrolytic capacitor is provided that contains a capacitor element, a case, and anode and cathode terminations having first and second external components. The first external components are perpendicular to a lower surface of the case, while the second external components are parallel to the lower surface of the case and extend outwardly away from the front and rear surfaces of the case, respectively. Further, the second external components are mounted to a circuit board such that at least a portion of the capacitor is embedded in the board and such that the second external components are parallel to and in contact with a mounting surface of the circuit board. The particular arrangement of the external components of the terminations stabilizes the capacitor when it is embedded into the board to minimize flexing against the board and cracking or delamination of the capacitor.
Abstract:
A capacitor whose electrical properties can be stable under a variety of different conditions is provided. The solid electrolyte of the capacitor is formed from a combination of an in situ polymerized conductive polymer and a hydroxy-functional nonionic polymer. One benefit of such an in situ polymerized conductive polymer is that it does not require the use of polymeric counterions (e.g., polystyrenesulfonic anion) to compensate for charge, as with conventional particle dispersions, which tend to result in ionic polarization and instable electrical properties, particularly at the low temperatures noted above. Further, it is believed that hydroxy-functional nonionic polymers can improve the degree of contact between the polymer and the surface of the internal dielectric, which unexpectedly increases the capacitance performance and reduces ESR.
Abstract:
A capacitor containing a solid electrolytic capacitor element including a sintered porous anode body, a first anode lead, and a second anode lead is provided. The first anode lead has a thickness that is larger than a thickness of the second anode lead. A portion of the first anode lead is embedded in the porous anode body, and a second portion of the first anode lead extends from a surface thereof in a longitudinal direction. Meanwhile, the second anode lead is electrically connected to the anode body for connection to an anode termination. In one embodiment, the second anode lead can be directly connected to a surface of the anode body. In another embodiment, the second anode lead can be indirectly connected to the anode body such as via attachment at an end of the second portion of the first anode lead.
Abstract:
A capacitor containing a solid electrolytic capacitor element including a sintered porous anode body, a first anode lead, and a second anode lead is provided. The first anode lead has a thickness that is larger than a thickness of the second anode lead. A portion of the first anode lead is embedded in the porous anode body, and a second portion of the first anode lead extends from a surface thereof in a longitudinal direction. Meanwhile, the second anode lead is electrically connected to the anode body for connection to an anode termination. In one embodiment, the second anode lead can be directly connected to a surface of the anode body. In another embodiment, the second anode lead can be indirectly connected to the anode body such as via attachment at an end of the second portion of the first anode lead.