摘要:
Techniques for dynamic service invocation and dynamic service adaptation in the context of a service oriented application. In one set of embodiments, a plurality of mediator services are introduced between the application and a plurality of actual services accessed by the application. The plurality of mediator services are configured to expose a common, abstract operation. At application runtime, the application determines, via a rules engine, a selection of a mediator service, and invokes the abstract operation by sending an invocation message to the selected mediator service. The selected mediator service transforms (i.e., adapts) the message into a format appropriate for invoking an actual operation exposed by an actual service associated with the selected mediator service. The selected mediator service then invokes the actual operation by sending the transformed message to the actual service.
摘要:
A colorimetric detector for chemical and biological agents or toxins is made of a giant unilamellar vesicle (GUV) having a membrane bilayer which is polymerized to stabilize the giant unilamellar vesicle and to provide extended conjugated polymer backbone, and the GUV has at least one incorporated molecular recognition site for the chemical and biological agents or toxins. The GUVs are about 10-300 microns and preferably made of a polymerizable diacetylenic GUV where the acyl chains are crosslinked. When the agents or toxins bind to the recognition site the detector exhibits a color change. The detector can be used in a colorimetric detector apparatus where the samples can be present in air or in water.
摘要:
A colorimetric detector for chemical and biological agents or toxins is made of a giant unilamellar vesicle (GUV) having a membrane bilayer which is polymerized to stabilize the giant unilamellar vesicle and to provide extended conjugated polymer backbone, and the GUV has at least one incorporated molecular recognition site for the chemical and biological agents or toxins. The GUVs are about 10-300 microns and preferably made of a polymerizable diacetylenic GUV where the acyl chains are crosslinked. When the agents or toxins bind to the recognition site the detector exhibits a color change. The detector can be used in a colorimetric detector apparatus where the samples can be present in air or in water.
摘要:
Selective, crosslinked chelating polymers are produced by substituting an acyclic chelating agent with a polymerizable functional group. The resulting substituted acyclic chelating agent is then complexed with the target metal ion. A crosslinkable monomer is then added and the complexed material is crosslinked. The complexed metal is then removed, providing a crosslinked polymeric chelating agent that has been templated for the target metal ion.
摘要:
The lipids of this invention are derivatives of phosphatidyl choline having the general chemical formula: ##STR1## wherein at least one of R and R' is a polymerizable unsaturated alkyl group, acid or ester, wherein X includes an iminodiacetic acid in the polymerizable metal chelating lipid (2) and wherein z is an integer from 1-20 including 1 and 20. Lipid microstructures are formed by mixing the polymerizable metal chelating lipid monomers (2) with polymerizable non-chelating lipid monomers wherein X includes a non-chelating group, for example, --N.sup.+ (CH.sub.3).sub.3.
摘要:
The lipids of this invention are derivatives of phosphatidyl choline having the general chemical formula: ##STR1## wherein at least one of R and R' is a polymerizable unsaturated alkyl group, acid or ester, wherein X includes an iminodiacetic acid in the polymerizable metal chelating lipid (2) and wherein z is an integer from 1-20 including 1 and 20. Lipid microstructures are formed by mixing the polymerizable metal chelating lipid monomers (2) with polymerizable non-chelating lipid monomers wherein X includes a non-chelating group, for example, --N.sup.+ (CH.sub.3).sub.3.
摘要:
The present invention provides novel polymerizable lipids and mixtures thof with non-polymerizable lipids and methods for the controlled release of encapsulated materials using stabilized or polymerized vesicles. Release is induced by pH, ions, temperature, light or other changes in the environment. Time release mechanisms are also employed. Applications of the present invention especially include encapsulation of enzymes and their subsequent sustained release for degradation of environmental pollutants, encapsulation of fluorescent markers for use in sensor systems, and encapsulation and release of fragrant molecules in detergents.
摘要:
Novel diacetylenic phospholipids having the diacetylenic moieties chemically decoupled from the rest of the acyl chains by the inclusion of one or more heteroatom, preferably oxygen, spacers on the acyl chains have the chemical formula: ##STR1## where m is 7, 8, 9, 10, 11, 12, or 13, where n is 8, 9, 10, 11, 12, or 13, where W is --O(CO)-- or --OCH.sub.2 --, where X is --CH.sub.2 --, --OCH.sub.2 --, --SCH.sub.2 --, --NHCH.sub.2 --, or --SiMe.sub.2 CH.sub.2 --, where Y is --CH.sub.2 --, --CH.sub.2 O--, --CH.sub.2 S--, --CH.sub.2 NH--, or --CH.sub.2 SiMe.sub.2 --, where Z is --N(CH.sub.3).sub.3, saccharide, or --ROH where R is --(CH.sub.2).sub.p -- and p is 0, 1, 2 or 3, and where X and Y are not both --CH.sub.2 --. Novel tubules made from these diacetylenic phospholipids have high flexibility and variable morphology.
摘要:
A method for synthesizing a diynoic acid having the formula CH.sub.3 (CH.sub.2).sub.n --C.tbd.C--C.tbd.C--(CH.sub.2).sub.m CO.sub.2 H comprising the steps of: selecting a one-halo alkyne from the group consisting of CH.sub.3 (CH.sub.2).sub.n C.tbd.CX, where X is a selected halogen; selecting an omega-alkynoic acid having the formula, HC.tbd.C(CH.sub.2).sub.m CO.sub.2 H; dissolving the alkynoic acid in an aqueous solution of base; adding a catalytic amount of cuprous halide dissolved in an aqueous solution of alkylamine to the aqueous solution of alkynoic acid; adding a reducing agent to the solution of alkynoic acid and cuprous halide; adding the one-halo alkyne to the solution; adding as much more of the reducing agent to the solution as is necessary to maintain the cuprous ion in the cuprous state; wherein m is selected from the group of 5, 6, 7, 8, 9, 10, and 11, and n is selected from the group of 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16.